The column program

The whole world of ion chromatography

6

P. Metro

Metrohm – the comprehensive solution

Metrohm has become a synonym for ion chromatography. For more than 25 years, Metrohm has been offering innovative and creative solutions in the area of IC separation columns and IC devices.

Welcome to the world of ion chromatography

With high-tech, long years of applications know-how, Swiss quality standards and a reasonable pricing policy, for procurement as well as for maintenance, Metrohm guarantees the optimum solution in ion chromatography.

Welcome to Metrohm!

Table of contents

Separation columns from Metrohm iColumn	10 11
Which column for which application?	12
Preselection	13
A) Anions without chemical suppression	13
B) Anions with chemical suppression	14
C) Oxidizable anions	16
D) Cations without chemical suppression	17
E) Cations with chemical suppression	18
F) Organic acids	18
G) Carbohydrates	19
H) Amino acids	19
Capacity of the separation columns	20
Position of the system peak	21
«MCS» Metrohm CO ₂ Suppressor	22
Flouibilite in our lighting there is to	
Flexibility in application thanks to free selection of the pH value	23
hee selection of the private	25
Standards	24
ABCs of practical work	26
T ing for all out managements of	20
Tips for eluent preparation	28
Inline Eluent Preparation	29
Separation columns	30
IC anion-separation columns for analyses	
without chemical suppression	30
Hamilton PRP-X100 - 125/4.0 (6.1005.000)	32
Hamilton PRP-X100 - 250/4.0 (6.1005.010)	34
Super-Sep - 100/4.6 (6.1009.000)	36
IC anion-separation columns for analyses	
with or without chemical suppression	38
Metrosep Anion Dual 2 - 75/4.6 (6.1006.100)	40
Metrosep Anion Dual 3 - 100/4.0 (6.1006.120)	42
Metrosep Dual 4 - 100/4.6 (6.1016.030)	44

. Metrosep A Supp 4 - 250/4.0 (6.1006.430)

IC anion-separation columns for analyses	
with chemical suppression	48
Phenomenex Star-Ion A300™ - 100/4.6	
(6.1005.100)	50
Phenomenex Star-Ion A300™ HC - 100/10.0	
(6.1005.110)	52
Metrosep A Supp 1 - 250/4.6 (6.1005.300)	54
Metrosep A Supp 1 HS - 50/4.6 (6.1005.350)	56
Metrosep A Supp 3 - 250/4.6 (6.1005.320)	58
Metrosep A Supp 5 - 50/4.0 (6.1006.550)	60
Metrosep A Supp 5 - 100/4.0 (6.1006.510)	62
Metrosep A Supp 5 - 150/4.0 (6.1006.520)	64
Metrosep A Supp 5 - 250/4.0 (6.1006.530)	66
Metrosep A Supp 7 - 150/4.0 (6.1006.620)	68
Metrosep A Supp 7 - 250/4.0 (6.1006.630)	70
Metrosep A Supp 10 - 50/4.0 (6.1020.050)	72
Metrosep A Supp 10 - 75/4.0 (6.1020.070)	74
Metrosep A Supp 10 - 100/4.0 (6.1020.010)	76
Metrosep A Supp 10 - 250/4.0 (6.1020.030)	78
Metrosep A Supp 15 - 50/4.0 (6.1030.450)	80
Metrosep A Supp 15 - 100/4.0 (6.1030.410)	82
Metrosep A Supp 15 - 150/4.0 (6.1030.420)	84
Metrosep A Supp 15 - 250/4.0 (6.1030.430)	86
Metrosep A Supp 16 - 100/4.0 (6.1031.410)	88
Metrosep A Supp 16 - 150/4.0 (6.1031.420)	90
Metrosep A Supp 16 - 250/4.0 (6.1031.430)	92
Microbore IC anion-separation columns for low	wer
eluent consumption and greater sensitivity	94
	~ ~ ~

30	eluent consumption and greater sensitivity	94
	Metrosep A Supp 5 - 150/2.0 (6.1006.220)	96
30	Metrosep A Supp 5 - 250/2.0 (6.1006.230)	98
32	Metrosep A Supp 7 - 150/2.0 (6.1006.640)	100
34	Metrosep A Supp 7 - 250/2.0 (6.1006.650)	102
36	Metrosep A Supp 10 - 50/2.0 (6.1020.250)	104
	Metrosep A Supp 10 - 75/2.0 (6.1020.270)	106
	Metrosep A Supp 10 - 100/2.0 (6.1020.210)	108
38	Metrosep A Supp 10 - 150/2.0 (6.1020.220)	110
40	Metrosep A Supp 10 - 250/2.0 (6.1020.230)	112
42	Metrosep A Supp 15 - 250/2.0 (6.1030.230)	114
44	Metrosep A Supp 16 - 100/2.0 (6.1031.210)	116
46	Metrosep A Supp 16 - 150/2.0 (6.1031.220)	118
	Metrosep A Supp 16 - 250/2.0 (6.1031.230)	120

IC separation columns for the	
determination of organic acids –	
ion-exclusion chromatography	122
Hamilton PRP-X300 - 250/4.0 (6.1005.030)	124
Metrosep Organic Acids - 100/7.8 (6.1005.210)	126
Metrosep Organic Acids - 250/7.8 (6.1005.200)	128

IC carbohydrate-separation columns – anionexchange chromatography applying pulsed amperometric detection (PAD)

amperometric detection (1712)	130
Metrosep Carb 2 - 100/4.0 (6.1090.410)	132
Metrosep Carb 2 - 150/4.0 (6.1090.420)	134
Metrosep Carb 2 - 250/4.0 (6.1090.430)	136
Hamilton RCX-30 - 150/4.6 (6.1018.010)	138
Hamilton RCX-30 - 250/4.6 (6.1018.000)	140

Microbore IC carbohydrate-separation colum	าทร
for lower eluent consumption and greater	
sensitivity	142
Metrosep Carb 2 - 100/2.0 (6.01090.210)	144

Metrosep curb	2	100/2.0	(0.01030.210)	1 -
Metrosep Carb	2 -	150/2.0	(6.01090.220)	14
Metrosep Carb	2 -	250/2.0	(6.01090.230)	14

IC amino acid-separation column with

optical detection after post-column reaction	150
Metrosep Amino Acids 1 - 100/4.0 (6.4001.410)	152

IC cation-separation columns for analyses without chemical suppression

Nucleosil 5SA - 125/4.0 (6.1007.000)
Metrosep C 3 - 100/4.0 (6.1010.410)
Metrosep C 3 - 150/4.0 (6.1010.420)
Metrosep C 3 - 250/4.0 (6.1010.430)
Metrosep C 4 - 50/4.0 (6.1050.450)
Metrosep C 4 - 100/4.0 (6.1050.410)
Metrosep C 4 - 150/4.0 (6.1050.420)
Metrosep C 4 - 250/4.0 (6.1050.430)
Metrosep C 5 - 150/4.6 (6.4000.320)
Metrosep C 6 - 100/4.0 (6.1051.410)
Metrosep C 6 - 150/4.0 (6.1051.420)
Metrosep C 6 - 250/4.0 (6.1051.430)

Microbore IC cation-separation columns for lower eluent consumption and greater sensitivity 180 Metrosep C 4 - 100/2.0 (6.1050.210) 182 22 Metrosep C 4 - 150/2.0 (6.1050.220) 184 Metrosep C 4 - 250/2.0 (6.1050.230) 186 IC cation-separation columns for analyses with chemical suppression 188 Metrosep C Supp 1 - 100/4.0 6.1052.410 190 Metrosep C Supp 1 - 150/4.0 6.1052.420 130 192 Metrosep C Supp 1 - 250/4.0 6.1052.430 194 Separation column for the determination of organic substances 196 ProntoSil 120-5-C18 AQ - 150/4.0 (6.1008.100) 198 200 IC guard columns (precolumns) IC guard column cartridge for Hamilton PRP-X100 2 (6.1005.020) 202 Super-Sep Guard/4.6 (6.1009.010) 203 Metrosep Dual 4 Guard Column Kit (6.1016.500) 204 46 Metrosep A Supp 1 Guard/4.6 (6.1005.340) 18 205 Metrosep A Supp 4/5 Guard/4.0 (6.1006.500) 206 Metrosep A Supp 4/5 S-Guard/4.0 (6.1006.540) 206 Metrosep A Supp 5 Guard/2.0 (6.1006.600) 207 Metrosep A Supp 5 S-Guard/2.0 (6.1006.610) 207 Metrosep A Supp 10 Guard/4.0 (6.1020.500) 208 Metrosep A Supp 10 S-Guard/4.0 (6.1020.510) 208 154 Metrosep A Supp 10 Guard HC/4.0 (6.1020.520) 208 Metrosep A Supp 10 Guard/2.0 (6.1020.600) 209 156 Metrosep A Supp 10 S-Guard/2.0 (6.1020.610) 158 209 160 Metrosep A Supp 15 Guard/4.0 (6.1030.500) 210 162 Metrosep A Supp 15 S-Guard/4.0 (6.1030.510) 210 Metrosep A Supp 15 Guard/2.0 (6.1030.600) 164 211 166 Metrosep A Supp 15 S-Guard/2.0 (6.1030.610) 211 168 Metrosep A Supp 16 Guard/4.0 (6.1031.500) 212 Metrosep A Supp 16 S-Guard/4.0 (6.1031.510) 170 212 172 Metrosep A Supp 16 Guard/2.0 (6.1031.600) 213 174 Metrosep A Supp 16 S-Guard/2.0 (6.1031.610) 213 176 Metrosep Organic Acids Guard/4.6 (6.1005.250) 214 Metrosep Carb 2 Guard/4.0 (6.1090.500) 215 178

Metrosep Carb 2 S-Guard/4.0 (6.1090.510)

215

Metrosep Carb 2 Guard/2.0 (6.01090.600)	216
Metrosep Carb 2 S-Guard/2.0 (6.01090.610)	216
Nucleosil 5SA 2 Guard Cartridge/4.0 (6.1007.110)	217
Metrosep C 3 Guard/4.0 (6.1010.450)	218
Metrosep C 3 S-Guard/4.0 (6.1010.460)	218
Metrosep C 4 Guard/4.0 (6.1050.500)	219
Metrosep C 4 S-Guard/4.0 (6.1050.510)	219
Metrosep C 4 Guard/2.0 (6.1050.600)	220
Metrosep C 4 S-Guard/2.0 (6.1050.610)	220
Metrosep C Supp 1 Guard/4.0 (6.1052.500)	221
Metrosep C Supp 1 S-Guard/4.0 (6.1052.510)	221
Metrosep RP 2 Guard/3.5 (6.1011.030)	222
ProntoSil 120-5-C18 AQ Guard/4.0 (6.1008.110)	223
Metrosep BP 1 Guard/2.0 (6.1015.100)	224
Preconcentration columns	226

Preconcentration columns	226
Metrosep A PCC 2/4.0 (6.1006.330)	228
Metrosep A PCC 2 HC/4.0 (6.1006.340)	228
Metrosep A PCC 2 VHC/4.0 (6.1006.350)	228
Metrosep C PCC 1/4.0 (6.1010.300)	229
Metrosep C PCC 1 HC/4.0 (6.1010.310)	229
Metrosep C PCC 1 VHC/4.0 (6.1010.320)	229

216	IC trap columns	230
216	Metrosep A Trap 1 - 100/4.0 (6.1014.000)	232
217	Metrosep C Trap 1 - 100/4.0 (6.1015.000)	233
218	Metrosep RP Trap 1 - 50/4.0 (6.1014.100)	234
218	Metrosep RP Trap 2 - 100/4.0 (6.1014.150)	235
219	Metrosep I Trap 1 - 100/4.0 (6.1014.200)	236
219	Metrosep BO ₃ ³⁻ Trap 1 - 100/4.0 (6.1015.200)	237
220	Metrosep CO ₃ ²⁻ Trap 1 - 100/4.0 (6.1015.300)	238
220		
221	IC sample-preparation cartridges	240
221	IC sample-preparation cartridge IC-RP (6.1012.X00)	242
222	IC sample-preparation cartridge IC-H (6.1012.X10)	242
223	IC sample-preparation cartridge IC-Ag (6.1012.X20)	242
224	IC sample-preparation cartridge IC-OH (6.1012.X30)	243
	IC sample-preparation cartridge IC-Na (6.1012.X40)	243
226	IC sample-preparation cartridge IC-C18 (6.1012.X50)	243
228		
228	IC accessories parts	244
228	PEEK inline filter (6.2821.120)	245
229	Coupling safety olive with PEEK inline filter	

(6.2744.180)

Separation columns from Metrohm

Separation columns from Metrohm are the backbone of high-performance analytics in ion chromatography. The combination of Metrohm IC separation columns and Metrohm IC systems guarantees:

- High separating efficiency
- Short analysis times
- Excellent reproducibility
- Long lifetime
- Low costs

Metrohm offers the right separation columns for all disciplines in ion chromatography:

- Anions with or without suppression
- Organic acids
- Cations with or without suppression
- Transition metals
- Carbohydrates
- Amines
- Amino acids

A small number of separation columns are sufficient for solving the majority of application problems. Metrohm offers the correct column material, both for standard applications and for complex separation tasks:

- Polystyrene divinylbenzene
- Polyvinyl alcohol
- Polymethacrylate
- Silica gel
- Monolith

This flexibility guarantees top performance. The new 2 mm columns enable reduced eluent consumption, low detection limits, and universal use.

Ion chromatography with Metrohm systems can be carried out with or without chemical suppression. Therefore, the application determines the pH value and not the other way around. A large selection of anion eluents is thus available:

- Phthalate
- Benzoate
- Borate
- Hydrogen carbonate
- Carbonate
- Hydroxide

Metrohm is the comprehensive solution for applications in ion chromatography. For more than 25 years, Metrohm has been offering innovative and creative solutions in the area of IC separation columns and IC instruments. A comprehensive network of application laboratories is available worldwide to provide the correct answers to analytical questions: on-site, quickly, and focused on the customer. The Internet (www.metrohm.com) provides an extensive database with information and problem solutions for all areas of ion analysis.

Metrohm – the whole world of ion chromatography

iColumn

The world's first intelligent column generation in ion chromatography – just click and start

- All column data available immediately
- Active monitoring of all important column functions
- Uninterrupted retraceability of all column parameters

Intelligent columns, built into all Metrohm IC instruments - the MagIC Net software registers immediately which separation columns are available to the IC system. One click, and the software detects such typical standard conditions for columns as standard eluents and flow rate, the permissible maximum values for pressure and flow, and the correct guard column. This data and other information are applied in the method if desired. As a result, it is no longer necessary to enter all of this data into the method. The iColumn knows how many hours it has already been in operation and how many samples it has already analyzed. MagIC Net monitors the separating efficiency of the column and switches the system off in the event that the permissible pressure is exceeded. If the performance of the column falls below a previously defined value, then MagIC Net can even have the column reordered automatically by E-mail.

If the Metrosep separation column is used in different systems, then it will take along all information stored on its memory chip to the next IC system. This allows for uninterrupted traceability and GLP monitoring, even on different IC devices, for all columns used. System validation is simplified significantly.

The iColumn concept is flexible and encompasses the following data types:

- Freely definable data, e.g.
 - Column name
 - Comment field in which, for example, the name of the application can be entered
- Data permanently linked with the column, e.g.
 - Column type (e.g. Metrosep A Supp 10 100/4.0)
 - Order number
 - Serial number
 - Standard flow
 - Standard eluent
 - Standard injection volume
 - Standard temperature
 - Length x inner diameter
 - Particle size
 - pH range
 - Maximum permitted pressure
 - Maximum permitted flow rate
- Data entered by the IC system and the MagIC Net software, e.g.
 - Operating hours
 - Number of injections
 - Maximum pressure
 - Maximum flow used

With the exception of the Metrosep Anion Dual 2 - 75/4.6 (6.1006.100), all Metrosep separation columns are available exclusively as iColumns. Excluded from this are the other column types, i.e. guard, preconcentration, and trap columns as well as separation columns which do not have the Metrosep designation.

Which column for which application?

Preselection

	High concentration Simple setup HBO_3^{2-} $H_2SiO_4^{2-}$ no HPO_4^{2-}	without suppression	→A	
	Entire concentration spectrum	with suppression	→ B	
	Oxidizable anions	Amperometric detection		\rightarrow C
Cations			without suppression	\rightarrow D
			with suppression	\rightarrow E
Additional analytes	Organic acids		with or without suppression	→ F
	Carbohydrates			\rightarrow G
	Amino acids	Post-column reactions with	ninhydrin	\rightarrow H

This symbol indicates the respective standard column

A) Anions without chemical suppression

Requirements or application	Column	Page
No F ⁻ Simple separation problems Simple matrices Rapid separation	IC anion column Metrosep A Supp 4 - 250/4.0 6.1006.430	46
F ⁻ Difficult separation problems Difficult matrices	IC anion column Metrosep Anion Dual 2 - 75/4.6 6.1006.100	40
No F ⁻ Difficult separation problems Difficult matrices Biological samples	IC anion column Metrosep Anion Dual 3 - 100/4.0 6.1006.120	√ 42
Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ Difficult matrices (e.g. dyes) HBO ₃ ²⁻ , H ₂ SiO ₄ ²⁻	IC anion columns Hamilton PRP-X100 6.1005.000 (125/4.0) 6.1005.010 (250/4.0)	32 34
No F ⁻ , acetate Difficult matrices Special applications (e.g. BF_4^-)	IC anion column Super-Sep - 100/4.6 6.1009.000	36

 \checkmark

B) Anions with chemical suppression

Requirements or app
F⁻, formate, acetate, Cl

Requirements or application	Column	Page
F⁻, formate, acetate, Cl⁻	IC anion column	
SO ₃ ²⁻ , SO ₄ ²⁻	Metrosep Anion Dual 2 - 75/4.6	
Simple matrices	6.1006.100	4
Standard anions		
ClO ₂ ⁻ , ClO ₃ ⁻ , ClO ₄ ⁻ , BrO ₃ ⁻		
Special separation problems		
F⁻, formate, acetate, Cl⁻	IC anion column	
SO ₃ ²⁻ , SO ₄ ²⁻	Metrosep Anion Dual 3 - 100/4.0	
Simple matrices	6.1006.120	4
Standard anions		
ClO ₂ ⁻ , ClO ₃ ⁻ , ClO ₄ ⁻ , BrO ₃ ⁻		
Special separation problems		
Biological samples		
Perchlorate in difficult matrices, EPA 314	IC anion column (Monolith)	
Very high ionic strength	Metrosep Dual 4 - 100/4.6	
	6.1016.030	4
Great differences in concentration	IC anion column	т
High ionic strength		
ClO_{2}^{-} , ClO_{3}^{-} , ClO_{4}^{-} , BrO_{3}^{-}	Metrosep A Supp 1 - 250/4.6 6.1005.300	5
		C
SCN ⁻ , SO ₃ ²⁻ , SO ₄ ²⁻ , S ₂ O ₃ ²⁻	IC anion column	
Polyphosphates	Metrosep A Supp 3 - 250/4.6	-
	6.1005.320	5
Standard anions	IC anion column	
Difficult matrices	Metrosep A Supp 4 - 250/4.0	1
Critical samples	6.1006.430	4
Standard anions	IC anion columns	
F⁻, Cl⁻, Br⁻, l⁻	Metrosep A Supp 5	
ClO ₂ ⁻ , ClO ₃ ⁻ , ClO ₄ ⁻ , BrO ₃ ⁻	6.1006.550 (50/4.0)	6
BrO_3^{-} at high ionic strength	6.1006.510 (100/4.0)	6
$Cr(VI) (CrO_4^{2-})$	6.1006.520 (150/4.0)	
I⁻ (not with 250 mm)		6
Method development		
Universal applications	6.1006.530 (250/4.0)	6
Difficult matrices	6.1006.220 (150/2.0)	g
Difficult separation problems	6.1006.230 (250/2.0)	ç
Rapid separation (with 50 and 100 mm)		
PO_4^{3-} in soft drinks (with 100 mm)		
IC-MS coupling		
Applications with gradient		
Standard anions	IC anion columns	
Oxohalides, EPA 300 (with 250 mm)	Metrosep A Supp 7	
Isocratic separation of glycolate and acetate	6.1006.620 (150/4.0)	6
		7
Difficult separations	0.1000.030 (250/4.0)	
Difficult separations Bayer liquors	6.1006.630 (250/4.0) 6.1006.640 (150/2.0)	10

Requirements or application	Column	Page
Anions in salt solutions	Metrosep Carb 2 6.1090.410 (100/4.0) 6.01090.210 (100/2.0)	132 144
PO_4^{3-} in soft drinks with cyclamate Standard anions (no F ⁻) SCN^- , SO_3^{2-} , SO_4^{2-} , $S_2O_3^{2-}$ Separation SO_3^{2-} , SO_4^{2-} Aerosols with PILS/MARGA (75 mm) Air analytics IC-MS coupling Aggressive matrices	IC anion columns Metrosep A Supp 10 6.1020.050 (50/4.0) 6.1020.070 (75/4.0) 6.1020.010 (100/4.0) 6.1020.030 (250/4.0) 6.1020.250 (50/2.0) 6.1020.270 (75/2.0) 6.1020.210 (100/2.0) 6.1020.220 (150/2.0) 6.1020.230 (250/2.0)	72 74 76 78 104 106 108 110 112
Standard anions Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ in drinking water Simple separation problems Rapid separation Polyphosphates Method development	IC anion column Metrosep A Supp 15 - 50/4.0 6.1030.450	80
Standard anions Simple separation problems Rapid separation Citrate/phosphate Simple matrices	IC anion column Metrosep A Supp 15 - 100/4.0 6.1030.410	82
Standard anions Drinking water analyses F ⁻ , glycolate Phosphate species Complex matrices Method development	IC anion column Metrosep A Supp 15 - 150/4.0 6.1030.420	84
Standard anions Universal applications Monobasic organic acids Dibasic organic acids in addition to SO ₄ ²⁻ Nitrogen species Complex separation problems Difficult matrices IC-MS coupling	IC anion columns Metrosep A Supp 15 - 250/x.0 6.1030.430 (250/4.0) 6.1030.230 (250/2.0)	86 114
Standard anions Universal applications Non-critical matrices BrO ₃ ⁻ (EPA 326, DIN EN ISO 11206) IC-MS coupling	IC anion columns Metrosep A Supp 16 - 100/x.0 6.1031.410 (100/4.0) 6.1031.210 (100/2.0)	88 116
Standard anions Universal applications Complex matrices IC-MS coupling	IC anion columns Metrosep A Supp 16 - 150/x.0 6.1031.420 (150/4.0) 6.1031.220 (150/2.0)	√ 90 118

Requirements or application	Column	Page
Standard anions	IC anion columns	
Universal applications	Metrosep A Supp 16 - 250/x.0	
Oligosaccharides and polysaccharides	6.1031.430 (250/4.0)	92
Cl^{-} , SO_4^{2-} in electroplating baths	6.1031.230 (250/2.0)	120
Silicate in addition to standard anions (4 mm column)		
Quality monitoring of high-purity chemicals		
(e.g. conc. acids)		
Complex separation problems		
Difficult matrices		
IC-MS coupling		
Short retention times	IC anion column	
No Cl⁻	Phenomenex Star-Ion A300 [™] - 100/4.6	
	6.1005.100	50
BrO_3^- at high ionic strength (EPA 326, DIN EN ISO	IC anion column	
11206)	Phenomenex Star-Ion A300™ HC - 100/10.0	
	6.1005.110	52

C) Oxidizable anions

Requirements or application	Column	Page
CN⁻	IC anion column	
S ²⁻	Metrosep A Supp 1 - 250/4.6	
	6.1005.300	54
CN⁻	IC anion column	
S ²⁻	Metrosep A Supp 10 - 100/x.0	\checkmark
	6.1020.010 (100 x 4.0)	76
	6.1020.210 (100 x 2.0)	108
ClO ₂ ⁻ , NO ₂ ⁻ , S ₂ O ₃ ²⁻ , SCN ⁻ , I ⁻	IC anion column	
	Super-Sep - 100/4.6	
	6.1009.000	36
Brī, Iī	IC anion column	
	Metrosep Anion Dual 2 - 75/4.6	
	6.1006.100	40
NO_2^- , CIO_2^-	IC anion column	
S₂O₃²⁻, SCN⁻, I⁻	Metrosep A Supp 5 - 100/4.0	
	6.1006.510	62

D) Cations without chemical suppression

Requirements or application	Column	Page
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ Very rapid separations	IC cation column Metrosep C 4 - 50/4.0	
Simple matrices	6.1050.450	164
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ Lipophilic amines with short retention times	IC cation columns Metrosep C 4 - 100/x.0	
Rapid separations	6.1050.410 (100/4.0)	166
	6.1050.210 (100/2.0)	182
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ Transition metals	IC cation columns Metrosep C 4 - 150/x.0	\checkmark
Amines	6.1050.420 (150/4.0)	168
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ , Mn ²⁺ ,	6.1050.220 (150/2.0) IC cation columns	184
Co ²⁺ , Ni ²⁺ , Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , amines	Metrosep C 4 - 250/x.0	
NH_4^+ , ethanolamines Na^+/NH_4^+ separation	6.1050.430 (250/4.0) 6.1050.230 (250/2.0)	170 186
NH ₄ ⁺ , methylamines, and ethylamines	0.000.200 (200,2.0)	100
Transition metals Difficult separation problems		
Great differences in concentration		
Li*, Na*, K*, Rb*, Cs*, Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ *	IC cation column	
Lipophilic amines with short retention times Rapid separations	Metrosep C 6 - 100/4.0 6.1051.410	174
Amines	IC cation column	
Transition metals Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH_4^+	Metrosep C 6 - 150/4.0 6.1051.420	176
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ , Co ²⁺ ,	IC cation columns	
Ni ²⁺ , Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , Amine Very good Na ⁺ /NH ₄ ⁺ separation	Metrosep C 6 - 250/4.0 6.1051.430	178
NH_{4}^{+} , $(CH_{3})NH_{3}^{+}$, $(CH_{3})_{2}NH_{2}^{+}$, $(CH_{3})_{3}NH^{+}$, $(CH_{3})_{4}N^{+}$,		
and the respective ethanolamines Difficult separation problems		
Great differences in concentration		
Transition metals Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ , Co ²⁺ ,	IC cation columns	
Ni ²⁺ , Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , amines	Metrosep C 3	
NH ₄ ⁺ , monoethanolamine Transition metals	6.1010.410 (100/4.0) 6.1010.420 (150/4.0)	158 160
Na^{+}/NH_{4}^{+} separation	6.1010.430 (250/4.0)	162
Matrices with high pH Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cd ²⁺ , Zn ²⁺ , Mn ²⁺	IC cation column	156
Mg^{2+} , Ca^{2+} in addition to large amounts of Na^+	Nucleosil 5SA - 125/4.0	150
	6.1007.000	470
Transition metals	IC cation column Metrosep C 5 - 150/4.6	172
	6.4000.320	
Transition metals, U, and Pu	see footnote on next page	

E) Cations with chemical suppression

Requirements or application	Column	Page
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ Lipophilic amines with short retention times Rapid separations Trace analysis	IC cation columns Metrosep C Supp 1 - 100/4.0 6.1052.410	190
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ Transition metals Amines Trace analysis	IC cation columns Metrosep C Supp 1 - 150/4.0 6.1052.420	192 √
Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , NH ₄ ⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , amines NH ₄ ⁺ , ethanolamines Na ⁺ /NH ₄ ⁺ separation NH ₄ ⁺ , methylamines, and ethylamines Transition metals Difficult separation problems Great differences in concentration Trace analysis	IC cation columns Metrosep C Supp 1 - 250/4.0 6.1052.430	194
Transition metals	IC cation column Metrosep C 5 - 150/4.6 6.4000.320	172
Transition metals, U, and Pu	*	

F) Organic acids

Requirements or application	Column	Page
Organic acids: Citrate, tartrate, malate, ascorbate,	IC exclusion columns	
succinate, etc.	Metrosep Organic Acids	
Short-chain fatty acids: Formate, acetate, propionate,	6.1005.210 (100/7.8)	126
butyrate, etc.	6.1005.200 (250/7.8)	128
Simple matrices (100 mm)		1
Difficult matrices (250 mm)		V
Simple separation problems (100 mm)		
Difficult separation problems (250 mm)		
Glycolic acid, monochloroacetic acid	IC exclusion column	
Simple matrices	Hamilton PRP-X300 - 250/4.0	
Simple separation problems	6.1005.030	124
Formate determination		

* Reliable determinations of transition metals as well as uranium and plutonium can be made into the ultra trace range using voltammetry and polarography.

G) Carbohydrates

Requirements or application	Column	Page
Monosaccharides	IC carbohydrate column	
Disaccharides	Metrosep Carb 2	
Sugar alcohols	6.1090.410 (100/4.0)	132
Oligosaccharides	6.01090.210 (100/2.0)	144
Simple separation problems		
Very rapid separations		
Monosaccharides	IC carbohydrate column	,
Disaccharides	Metrosep Carb 2	\checkmark
Sugar alcohols	6.1090.420 (150/4.0)	134
Anhydrosugars	6.01090.220 (150/2.0)	146
Oligosaccharides		
Rapid separations		
Monosaccharides	IC carbohydrate column	
Disaccharides	Metrosep Carb 2	
Sugar alcohols	6.1090.430 (250/4.0)	136
Anhydrosugars	6.01090.230 (250/2.0)	148
Complex separations		
Monosaccharides	IC carbohydrate column	
Disaccharides	Hamilton RCX-30 - 150/4.6	
Oligosaccharides	6.1018.010	138
Sugar alcohols		
Simple separation problems Rapid separation		
Monosaccharides	IC carbohydrate column	
Disaccharides	Hamilton RCX-30 - 250/4.6	
Sugar alcohols	6.1018.000	140
Difficult separation problems		
Difficult matrices		

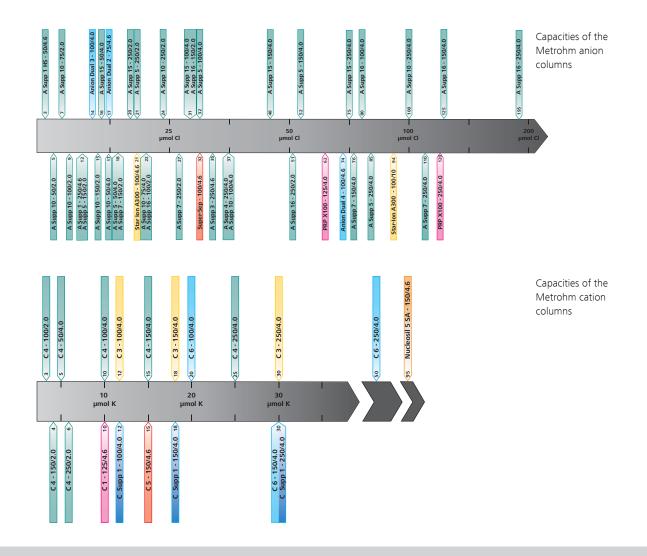
H) Amino acids

Requirements or application	Column	Page
Amino acids	IC amino acid column	
	Metrosep Amino Acids 1 - 100/4.0	
	6.4001.410	152

Capacity of the separation columns

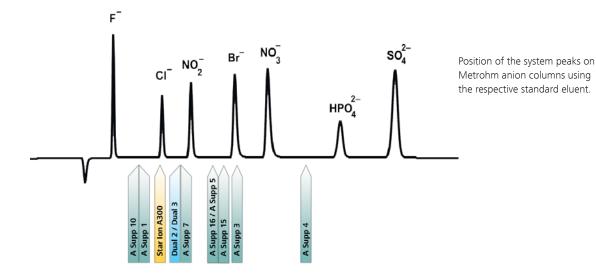
The capacity of a separation column is determined by the type of the stationary phase used. The capacity has no direct influence on selectivity, whereas the column material does.

In addition, the capacity of a separation column changes in proportion to the quantity of packaging material used. This means that the capacity of a separation column also increases as the column length and diameter increase.


The capacity of separation columns can be determined with a wide variety of methods, all of which can be justified scientifically. The capacities specified here have to do with chloride or potassium exchange capacities, respectively, which are calculated by means of static charging. The specifications of other manufacturers are based to some extent on proton exchange and neutralization methods. The latter results in disproportionately higher numerical values. The capacity specifications of a column manufacturer can be used to compare different columns of this manufacturer. Capacity values from different manufacturers that apply different determination methods are not comparable.

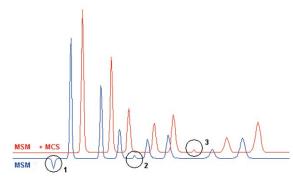
Which capacity is right? The following rules apply:

- Simple separation tasks, weakly ionic matrix
 → Small capacity and therefore rapid separation of
 the analytes
- Complex separation tasks, strongly ionic matrix
 → High capacity and therefore long retention times for the analytes


The practical solution is often to be found somewhere in between. Most separations can thus be solved with just a limited number of column types:

- Determination of anions: Metrosep A Supp 4 -250/4.0, Metrosep A Supp 5 - 150/4.0, Metrosep A Supp 16 - 150/4.0
- Determination of cations: Metrosep C 4 150/4.0

Position of the system peak


When work is performed with carbonate eluent, a system peak is always present. Its size and position are determined by various factors. The position of the system peak, however, corresponds in the first approximation to the retention time of carbonate. For this reason this peak is also called the system peak. To ensure that the measured values are not skewed, it is important to know the position of the system peak in the chromatogram. With columns based on polystyrene in particular the system peak often lies directly beneath the chloride peak. The position of the system peak with the respective standard carbonate eluents is shown below. If the CO_2 suppressor «MCS» is used, then the influence of carbonate can be virtually excluded. Both system peak and injection peak are minimized and do not interfere with the integration.

«MCS» Metrohm CO₂ Suppressor

The «MCS» eliminates both carbonate from the sample and CO_2 that develops during the suppression reaction. As a result, the injection peak is practically nonexistent and the peak areas of the analyte ions are significantly larger. In addition, the system peak is effectively eliminated. The MCS is based on the gas permeability of a fluoropolymer membrane. The special system setup with an integrated vacuum cell, a fluoropolymer membrane, and a CO₂ adsorber cartridge is controlled by MagIC Net.

Chromatography the way it should always be

Chromatography with (red) and without sequential suppression (blue)

A unique feature of Metrohm IC is the combination of chemical suppression with the «MSM» (Metrohm Suppressor Module) and CO_2 -suppression using the «MCS» (Metrohm CO_2 Suppressor) for sequential suppression. This technique achieves lowest background conductivities for anion and cation suppression.

- Extremely low background conductivity
- Very small injection peak (1)
- Larger peak areas
- Lower detection limits (3)
- Minimized carbonate influence (2)
- No system peak (2)

Flexibility in application thanks to free selection of the pH value

Metrohm enables successful working with a large number of eluents. The correct choice of eluent has a decisive influence on the analytics. With Metrohm, there are no limitations and you can use virtually the entire pH range to obtain an optimum separation.

Ph	thalate	e Benz	Borate	Hyo car	drogen ⁽ bonate	Carbor I	nate Hydro	xide
						1		

pH ranges of various eluents for anion chromatography

Standards

24

The world of standards is also changing. Today it is the result that matters when it comes to compliance with standards. Which instrument was used to calculate the result is of secondary importance. This was not always the case. The fact that today you have a free choice of analytical instruments is in part due to the commitment of Metrohm application chemists, who have demonstrated to standards committees that new methods can also produce the correct result and therefore meet requirements.

The following standards deal with the determination of anions and cations in water using ion chromatography. The analytical requirements of these standards can be met with Metrohm IC systems. The separation columns with which the standard can be fulfilled are indicated in brackets.

EPA 300.1 Part A and Part B

Determination of inorganic anions in drinking water by ion chromatography. (Metrosep A Supp 7 - 250/4.0; 6.1006.630; see page 70)

EPA 314.0

Determination of perchlorate in drinking water by ion chromatography. (Metrosep Dual 4 - 100/4.6; 6.1016.030; see page 44)

EPA 218.7

Determination of dissolved hexavalent chromium by means of ion chromatography (post-column reaction and VIS detection). (Metrosep A Supp 5 - 150/4.0; 6.1006.520; see page 64)

EPA 317.0

Determination of inorganic oxyhalide disinfection byproducts in drinking water using ion chromatography. Trace analysis of bromate by means of post-column reaction – «o-dianisidine method». (Metrosep A Supp 5 -250/4.0; 6.1006.530; see page 66)

EPA 326, DIN EN ISO 11206

Determination of inorganic oxidation by-products in drinking water using ion chromatography. Trace analysis of bromate by means of post-column reaction and UV detection – «triiodide» method. Improved method without acidification using a suppressor. (Metrosep A Supp 16 - 100/4.0; 6.1031.410; see page 88)

EPA 332.0

Determination of perchlorate in drinking water by ion chromatography with chemical suppression as well as conductivity detection and ESI/MS detection. (Metrosep A Supp 5 - 100/4.0; 6.1006.510; see page 62)

DIN 38413-8

Determination of the dissolved complexing agents nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and diethylenetriaminepentaacetic acid (DTPA) by liquid chromatography (LC). (2 x ProntoSil 120-5-C18 AQ - 150/4.0; 6.1008.100; see page 198)

DIN EN ISO 14911

Water quality – Determination of dissolved lithium, sodium, ammonium, potassium, manganese(II), calcium, magnesium, strontium, and barium using ion chromatography – Method for water and wastewater. (Metrosep C 4 - 150/4.0; 6.1050.420; see page 168)

DIN EN 13368-1

Determination of chelating agents in fertilizers by ion chromatography, Part 1: HEDTA, EDTA, DTPA. (Metrosep A Supp 3 - 250/4.6; 6.1005.320; see page 58)

DIN 38405-7

Determination of cyanides in slightly polluted water by ion chromatography or potentiometric titration (Metrosep A Supp 10 - 100/2.0; 6.1020.210; see page 108)

DIN EN ISO 10304-1

Water quality – Determination of the dissolved anions fluoride, chloride, nitrite, orthophosphate, bromide, nitrate, and sulfate by liquid chromatography – Part 1: Method for slightly polluted wastewater. (Metrosep Anion Dual 2 - 75/4.6; 6.1006.100, Metrosep A Supp 1 - 250/4.6; 6.1005.300; Metrosep A Supp 5 - 250/4.0; 6.1006.530 or Metrosep A Supp 16 - 150/4.0; 6.1031.420)

DIN EN ISO 10304-3

Water quality – determination of dissolved anions by liquid chromatography (LC) – Part 3: Determination of chromate, iodide, sulfite, thiocyanate, and thiososulfate in wastewater. (Metrosep Anion Dual 2 - 75/4.6; 6.1006.100, Metrosep A Supp 1 - 250/4.6; 6.1005.300 or Metrosep A Supp 5 - 150/4.0; 6.1006.520)

DIN EN ISO 10304-4

Water quality – Determination of dissolved anions by liquid chromatography (LC) – Part 4: Determination of chlorate, chloride, and chlorite in slightly polluted waste-water. (Metrosep Anion Dual 2 - 75/4.6; 6.1006.100 or Metrosep A Supp 5 - 250; 6.1006.530)

DIN EN ISO 15061

Determination of dissolved bromate in water. (Metrosep A Supp 5 - 250/4.0; 6.1006.530 or Metrosep A Supp 7 - 250/4.0; 6.1006.630)

ABCs of practical work

Bacterial growth

Bacterial growth has a significant negative effect on chromatography and destroys the analytical columns. A large number of chromatographic problems can be traced back to the growth of algae, bacteria, and molds. In order to prevent bacterial growth, eluents, rinsing, and regeneration solutions should always be prepared fresh and not reused after prolonged periods. We recommend that all vessels be thoroughly rinsed with ultrapure and UV-treated water and then rinsed with methanol/water or acetone/water and finally again with water before being refilled. If bacteria or algae should form despite this treatment, then 5% methanol or acetone can be added to the eluent. This is not possible when using membrane suppressors, because these could be destroyed by organic solvents. The «MSM», «MSM-HC», and «MSM-LC» Metrohm Suppressor Modules are 100% solvent-resistant. Methanol should not be used with some cation columns.

Cation analyses

For all analyses we recommend that the samples be acidified with nitric acid (approximately 100 μ L 2 mol/L HNO₃ per 100 mL of sample) (pH 2.5 - 3.5), otherwise divalent cation results may be overestimated depending on the age of the injection loop.

Chemical stress

Although many separation phases cover a wide pH range in terms of specification, this does not mean that they are chemically inert. Separation columns achieve their longest service life under constant chemical conditions. A column must never be allowed to dry out and must always be kept well-sealed.

CO₂

Carbon dioxide from air affect alkaline eluents. To avoid this, the eluent bottle should always be furnished with a CO_2 adsorber material («soda lime»). Eluents with a weak buffer capacity must also be protected against CO_2 .

Degassing the eluent

In order to prevent bubble formation, we recommended to use the Eluent Degasser in the IC instrument. Alternatively this is done by applying a vacuum created by a water-jet pump or vacuum pump for approximately 10 minutes or by means of an ultrasonic bath.

Eluent bottles

Eluents are positioned in special eluent bottles, usually directly on the IC system. To prevent moisture and carbon dioxide from being absorbed by the eluent, the bottles are equipped with a drying tube which normally has a molecular sieve and is filled with soda lime (as a weak CO_2 adsorber material) for sodium hydroxide and carbonate eluents.

Environmental protection

A great advantage of ion chromatography is that most work is carried out with aqueous media. The chemicals used in ion chromatography are therefore as non-toxic as possible and do not pollute the environment. Nevertheless, when work is carried out with acids, bases, organic solvents, or heavy metal standards, they must be disposed of properly after use.

Filter

If problems occur with IC systems, they are usually due to particles introduced by bacterial growth, unfiltered eluents, by the sample or by rinsing and regeneration solutions. This risk can be reduced to an absolute minimum by using an aspiration filter (6.2821.090), inline filter (6.2821.120), and guard columns (starting on page 200). The filters are part of the basic equipment of the Metrohm ion chromatographs and are included in the scope of delivery. We strongly recommend their use. Care should be taken to ensure that the filters are replaced regularly.

Filtration of the eluent

All eluents should be microfiltered (0.45 $\mu\text{m})$ immediately before being used.

Fun

Ion chromatography should be fun and not get on your nerves. Metrohm does everything it can to ensure that your IC systems work reliably with a minimum of upkeep, maintenance, and cost. Metrosep separation columns stand for quality, long lifetime, and outstanding results.

Guard columns (precolumns)

Guard columns (starting on page 200) are used to protect the valuable separation columns. We strongly recommend their use. As a rule they contain the same stationary phase as the separation column, although in a considerably smaller quantity to avoid influencing the chromatography. Guard columns eliminate critical contaminations which might react with the column material and they effectively eliminate particles and bacterial contamination. Guard columns need to be replaced if

- the backpressure in the system rises
- the chromatograohy gets worse

It is recommended to use 3...4 guard columns during the lifetime of an analytical column. Guard columns are available for all Metrosep separation columns.

Long-term storage of the ion chromatograph

If the ion chromatograph will not be used for a prolonged period (>1 week), then the separation column should be removed and sealed with the stoppers provided. The ion chromatograph should be rinsed with methanol/water (1:4). Care should be taken to ensure that all three chambers of the suppressor are rinsed during this process. The separation column should be stored in the medium listed on the column data sheet, optimally between 4 and 8 °C. When the instrument is restarted, rinse the system with fresh eluent before installing the separation column and bring it up to room temperature.

Particles

All solutions, samples, regeneration solutions, the water and the eluents should be free of particles because they may clog the separation columns over time (increase in column pressure). This must be taken into account particularly when eluents are being produced, because eluents flow continuously through the column (500...1000 mL per working day in contrast to approximately 0.5 mL of sample solution). The sample can be filtered or dialyzed fully automatically with the «MISP» Metrohm Inline Sample Preparation systems.

Pulsation absorber

We recommend the use of a pulsation absorber (6.2620.150). In particular, polymethacrylate and polyvinyl alcohol columns should be protected against brief pressure surges which inevitably occur when the valves are switched. This protection is ensured when a pulsation absorber is used.

Quality of chemicals

All chemicals should be at least of p.a. or puriss. quality. The standards must be specially suited to ion chromatography.

Regeneration of separation columns

As a rule, if separation columns are operated with clean eluents and charged with particle-free samples, then a very long lifetime is guaranteed. A regeneration of the column is then not necessary and is also no longer possible after a large number of injections. Nevertheless, if the pressure in the column should rise unexpectedly or the separating efficiency decrease, then the regeneration steps which are indicated for each separation column can be carried out. In general, it must be noted that the regeneration takes place outside the analytical line. This means that the separation column is connected directly to the pump and the regeneration solution feeds through the column directly into the waste vessel. Before the separation column is reinstalled, it should be rinsed sufficiently - for 30 minutes at standard flow - with fresh eluent.

Sample-preparation cartridges

Sample-preparation cartridges are used for the preparation of critical samples which cannot be injected directly on the separation columns. Thus, for example, samplepreparation cartridges remove organic contamination or neutralize strongly alkaline or acidic samples. Samplepreparation cartridges are consumable materials which, as a rule, cannot be regenerated. They do not replace the guard column (precolumn), which should always be used with each separation column. «MISP» (Metrohm Inline Sample Preparation) offers an alternative to sample cartridges, e.g. for the fully automated neutralization of alkaline samples.

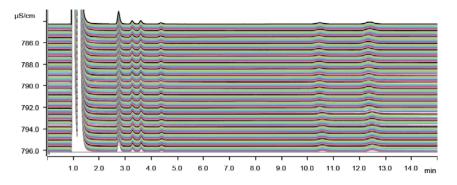
Water quality

Ion chromatography primarily involves work in aqueous media. Water quality is therefore of decisive importance for obtaining good chromatographic results. If the water quality is unsatisfactory, then the results will certainly be unsatisfactory as well. In addition, there is the risk of damaging instruments and separation columns due to insufficient water quality. The ultrapure water used should have a specific resistance greater than 18 M Ω cm and be particle-free. It is therefore recommended that the water be filtered through a 0.45 µm filter and treated with UV. Modern ultrapure water plants for laboratory use guarantee this water quality (Type I).

Tips for eluent preparation

Please note that the eluents must be degassed once in order to avoid bubble formation during the measurements. Degassing can be carried out fully automatically by the eluent degasser in the IC instrument. Alternatively, the ultrapure water used can already be degassed before the reagents are added.

Excellent water quality (high resistance, absence of particles, and bacteria) is crucial for good ion chromatography (see also the chapter «ABCs of practical work», starting on page 26). The exact concentration specifications of the recommended standard eluents are listed in the chapter «Separation columns», starting on page 30.


Inline Eluent Preparation

Inline Eluent Preparation means that eluent is refilled fully automatically while the ion chromatograph is in operation. An eluent concentrate is diluted in portions with ultra pure water for the purpose of producing the required eluent.

For automatic Inline Eluent Preparation, the 940 Professional IC Vario or 930 Compact IC Flex need only be expanded to include an 941 Eluent Production Module.

Tests with repeated injections of 250 μ g/L standard solutions over a time period of approximately 20 days have demonstrated outstanding stability with respect to reten-

tion times. After more than 800 sample injections, the relative standard deviations for a series of anions and cations were less than 0.55 and 0.41 percent, respectively. During a test sequence over a 24-hour period, the precision of the retention times for anions and cations were better than 0.09 and 0.08 percent, respectively. In short, this increases the reproducibility of retention times, thus permitting the exact analysis of anions and cations over extended periods, and does so without manual eluent production.

Superimposition of 200 sequential cation chromatograms (250 µg/L of the standard cation)

Separation columns

IC anion-separation columns for analyses without chemical suppression

Hamilton PRP-X100 - 125/4.0 (6.1005.000)

The Hamilton PRP-X100 - 125/4.0 IC anion column is a robust separation column based on a polystyrene/divinylbenzene copolymer. It is especially suited for the separation of chloride, nitrate, and sulfate without chemical suppression. Fluoride can also be determined if the cations are first removed with an H⁺ cartridge. The Hamilton PRP-X100 - 125/4.0 is also the separation column of choice for the determination of silicate. The column is characterized by a very good price-performance ratio.

Applications

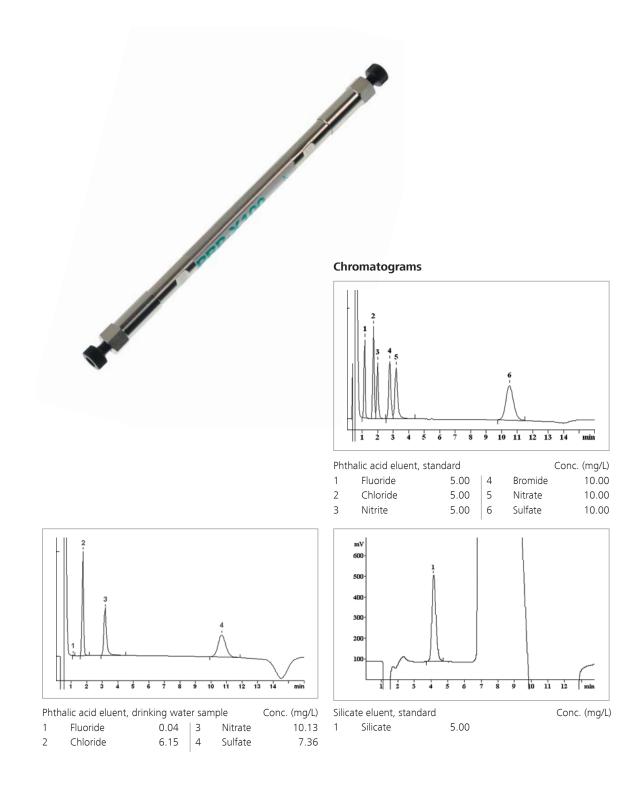
- Cl⁻, NO₃⁻, SO₄²⁻
- Difficult matrices, e.g. dyes
- HBO₃²⁻, H₂SiO₄²⁻

Technical information	
Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	125 x 4.0 mm
Column body	Stainless steel
Standard flow	2.0 mL/min
Maximum flow	8.0 mL/min
Maximum pressure	34 MPa
Particle size	10 µm
Organic modifier	0100%
pH range	113 (T > 30 °C: 18)
Capacity	62 µmol (Cl ⁻)

Eluents

Phthalic acid eluent	Phthalic acid	665 mg/2 L	2.0 mmol/L
(standard eluent)	Acetone	152 mL/2 L or	7.6% or 10%
		200 mL/2 L	
	NaOH		pH = 5
Silicate eluent	NaOH Sodium hydroxide (c = 10 mol/L)	0.64 mL/2 L	pH = 5 3.2 mmol/L

Care


Regeneration

Rinse the column with 0.5 mol/L tartaric acid or with 60 mmol/L HNO_3 in methanol at a flow rate of 0.5 mL/min for 2 h.

In case of contamination with iron: Rinse the column overnight with 0.1 mmol/L Na_2H_2EDTA at a flow rate of 0.5 mL/min.

Storage

For short periods (days) in the eluent, for longer periods (weeks) in methanol/water (1:4)

Ordering information

Hamilton PRP-X100 - 125/4.0 Guard column cartridge for Hamilton PRP-X100 Guard cartridge holder, 20 mm 6.1005.000 6.1005.020 6.02821.000

Hamilton PRP-X100 - 250/4.0 (6.1005.010)

The Hamilton PRP-X100 - 250/4.0 IC anion column is a 34 robust separation column based on a polystyrene/divinylbenzene copolymer. It is mainly used with difficult matrices, e.g. dyes.

Applications

Conductivity detection

- Cl⁻, NO₃⁻, SO₄²⁻
- Difficult matrices, e.g. dyes

Technical information	
rechnical information	
Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	250 x 4.0 mm
Column body	Stainless steel
Standard flow	2.0 mL/min
Maximum flow	8.0 mL/min
Maximum pressure	34 MPa
Particle size	10 µm
Organic modifier	0100%
pH range	113 (T > 30 °C: 18)
Capacity	120 µmol (Cl⁻)

Eluent

Phthalic acid eluent	Phthalic acid	665 mg/2 L	2.0 mmol/L
(standard eluent)	Acetone	152 mL/2 L or	7.6% or 10%
		200 mL/2 L	
	NaOH		pH = 5

Care

Regeneration Rinse the column with 0.5 mol/L tartaric acid or with 60 mmol/L HNO₃ in methanol at a flow rate of (weeks) in methanol/water (1:4) 0.5 mL/min for 2 h.

In case of contamination with iron: Rinse the column overnight with 0.1 mmol/L Na₂H₂EDTA at a flow rate of 0.5 mL/min.

Storage

For short periods (days) in the eluent, for longer periods

Hamilton PRP-X100 - 250/4.0 Guard column cartridge for Hamilton PRP-X100 Guard cartridge holder, 20 mm

6.1005.010 6.1005.020 6.02821.000

Super-Sep - 100/4.6 (6.1009.000)

In addition to the analysis of standard anions without chemical suppression, this column can be used for a variety of special applications. The Super-Sep - 100/4.6 IC anion column can be used for successful phosphate detection with alkaline eluent. Formate, acetate, and fluoride can be separated with suitable eluents. Overall, it is a column with very good separation performance.

Applications

- Conductivity detection
- F[−], acetate
- Difficult matrices
- Special applications, e.g. BF₄
- Amperometric detection
- ClO₂⁻, NO₂⁻, S₂O₃²⁻, SCN⁻, I⁻

Technical information

Substrate	Polymethacrylate
Column dimensions	100 x 4.6 mm
Column body	Stainless steel
Standard flow	1.5 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	2.5 MPa
Particle size	12 µm
Organic modifier	020%
pH range	113
Temperature range	2050 °C
Capacity	32 µmol (Cl⁻)

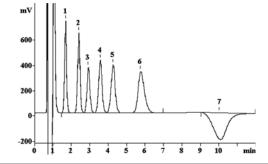
Eluent

Care

Phthalic acid eluent (standard eluent) Phthalic acid Acetonitrile TRIS 831 mg/2 L 100 mL/2 L

Storage

In the eluent


2.5 mmol/L 5.0% pH = 4.0

Regeneration Rinse the column with 20% acetonitrile in 0.1 mol/L nitric

acid; flow rate 0.3 mL/min for approx. 24 h. If insufficient:

- Metal contaminants: 0.1 mol/L sodium tartrate
- Protein contaminants: 0.1 mol/L sodium hydroxide or 20% acetic acid
- Organic contaminants: 20% acetonitrile in ultrapure water

5.00

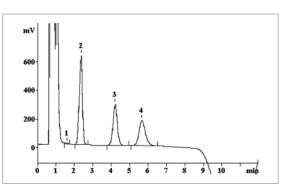
5.00

10.00

6

7

Phthalic acid eluent, standard


5.00 | 5 1 Fluoride 2 Chloride

3 Nitrite

4 Bromide Conc. (mg/L)

Nitrate Sulfate

10.00 10.00 2 System peak _

Phthalic acid eluent, drinking water sample Conc. (mg/L) Fluoride 0.03 5.35 1 4 Sulfate 5 Chloride 6.43 System peak _ 7.83 3 Nitrate

Ordering information

Super-Sep - 100/4.6 Super-Sep Guard/4.6 (no holder required) 6.1009.000 6.1009.010

Separation columns

IC anion-separation columns for analyses with or without chemical suppression

Metrosep Anion Dual 2 - 75/4.6 (6.1006.100)

The Metrosep Anion Dual 2 - 75/4.6 column is based on an acrylate polymer. Without chemical suppression, it can be used with conventional phthalic acid eluents and a range of other eluent systems. The benefits of working without chemical suppression (simple analytical method and linear calibration) can thus be taken advantage of.

When used with chemical suppression, the column excels in its outstanding separating efficiency, particularly with respect to early eluting ions (fluoride, acetate, formate). The separation between fluoride and the «water dip» as well as between chloride and nitrite is remarkable.

In order to prolong the lifetime of the column even further, we recommend the use of the Metrosep RP 2 Guard/3.5 (6.1011.030).

Applications

- Conductivity detection without chemical suppression
- Difficult separation problems
- Difficult matrices
- F⁻
- Conductivity detection with chemical suppression
- Standard anions
- F⁻, formate, acetate, Cl⁻, SO₃²⁻, SO₄²⁻
- Simple matrices
- ClO₂⁻, ClO₃⁻, ClO₄⁻, BrO₃⁻
 Special separation problems

Amperometric detection

• Br⁻, l⁻

Technical information

Polymethacrylate with qua-
ternary ammonium groups
75 x 4.6 mm
Stainless steel
0.8 mL/min
1.2 mL/min
7 MPa
6 µm
020%
112
17 µmol (Cl⁻)

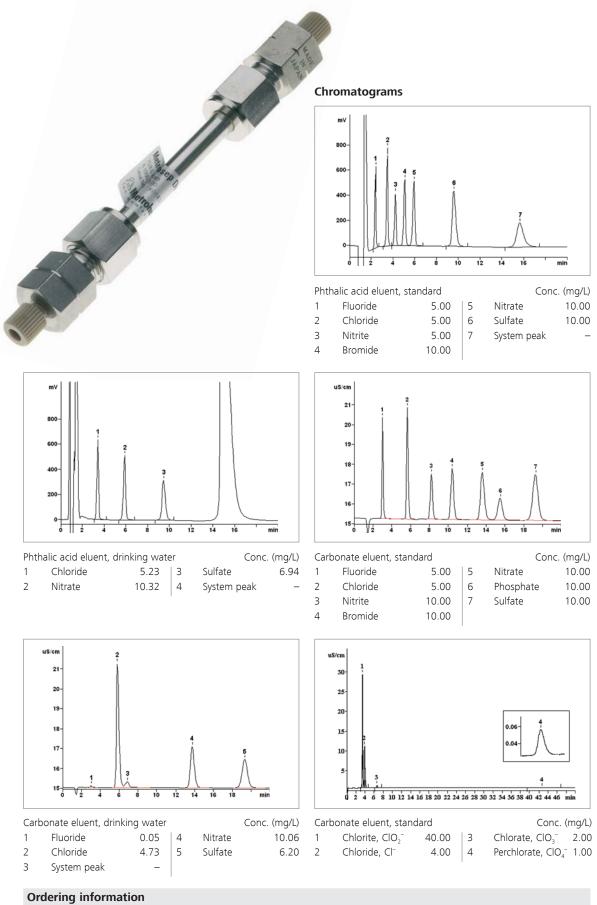
Eluents

Without chemical suppression				
Phthalic acid eluent	Phthalic acid	1660 mg/2 L	5.0 mmol/L	
(standard eluent)	Acetonitrile	40 mL/2 L	2%	
	NaOH		pH = 4.5	
With chemical suppression				
Carbonate eluent	Sodium hydrogen carbonate	336 mg/2 L	2.0 mmol/L	
(standard eluent)	Sodium carbonate	276 mg/2 L	1.3 mmol/L	

Care

Regeneration

Rinse with 0.1 mol/L HNO_3 at 0.3 mL/min for approx. 2 h, then switch to standard eluent.


Rinse with an eluent containing 100 mmol/L of the respective buffer salt.

Organic contaminants:

Rinse the column with eluent containing organic solvent (max. 20%).

Transition metals:

When using carbonate eluent: Add 0.1 mmol/L dipicolinic acid to the standard carbonate eluent; rinse in the opposite flow direction with this eluent for 3 hours at 0.5 mL/min; then rinse the column again under standard conditions in the flow direction for at least 2 hours.

Metrosep Anion Dual 2 - 75/4.6 Metrosep RP 2 Guard/3.5 Replacement filters for RP 2 Guard/3.5 (10 pcs.) 6.1006.100 6.1011.030 6.1011.130

Metrosep Anion Dual 3 - 100/4.0 (6.1006.120)

The Metrosep Anion Dual 3 - 100/4.0 made of PEEK is particularly suitable for biological samples. It can be used to solve separation problems both with and without chemical suppression. Its performance profile is identical to that of the Metrosep Anion Dual 2 - 75/4.6. This means that early eluting ions are separated very well and that oxohalides can be determined very efficiently. The Metrosep Anion Dual 3 - 100/4.0 can also be used for samples with high chloride but low nitrite contents.

When working with amperometric detection, the Metrosep Anion Dual 3 - 100/4.0 can be used for the determination of bromide and iodide.

In order to prolong the lifetime of the column, we recommend the use of the Metrosep RP 2 Guard/3.5 (6.1011.030).

Applications

Conductivity detection without chemical suppression

- Difficult separation problems
- Difficult matrices
- F⁻
- Conductivity detection with chemical suppression
- Standard anions
- F⁻, formate, acetate ,Cl⁻, SO₃²⁻, SO₄²⁻
- Simple matrices
- CIO₂⁻, CIO₃⁻, CIO₄⁻, BrO₃⁻

Special separation problems

Amperometric detection • Br⁻, I⁻

51,1

Technical information

Substrate	Polymethacrylate with qua-
	ternary ammonium groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	1.2 mL/min
Maximum pressure	7 MPa
Particle size	6 µm
Organic modifier	020%
pH range	112
Capacity	14 µmol (Cl⁻)

Eluents

Without chemical suppression

without chemical suppressio	лт 		
Phthalic acid eluent	Phthalic acid	1660 mg/2 L	5.0 mmol/L
(standard eluent)	Acetonitrile	40 mL/2 L	2%
	NaOH		pH = 4.5
With chemical suppression			
Carbonate eluent	Sodium hydrogen carbonate	336 mg/2 L	2.0 mmol/L
(standard eluent)	Sodium carbonate	276 mg/2 L	1.3 mmol/L

Care

Regeneration

Rinse with 0.1 mol/L $\rm HNO_3$ at 0.3 mL/min for approx. 2 h, then switch to standard eluent.

Rinse with an eluent containing 100 mmol/L of the respective buffer salt.

Organic contaminants:

Rinse the column with eluent containing organic solvent (max. 20%).

Transition metals:

When using carbonate eluent: Add 0.1 mmol/L dipicolinic acid to the standard carbonate eluent; rinse in the opposite flow direction with this eluent for 3 hours at 0.5 mL/min; then rinse the column again under standard conditions in the flow direction for at least 2 hours.

Storage

In the eluent

Ordering information	
Metrosep Anion Dual 3 - 100/4.0	6.1006.120
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130

43

Metrosep Dual 4 - 100/4.6 (6.1016.030)

The Metrosep Dual 4 separation columns are based on a functionalized Monolith based on silica gel. The Monolith permits an eluent flow of up to 5 mL/min. Despite the high flow, the column is characterized by low backpressure. In contrast to traditional materials, the Monolith has a much larger surface due to its structure of macropores and mesopores. This contributes to the high column capacity with simultaneously very low dead volume.

The Metrosep Dual 4 - 100/4.6 is suitable for a great number of applications. All standard anions can thus be separated in less than nine minutes. The high column capacity makes it largely insensitive to matrix influences. Even in a matrix of 3 g/L chloride, carbonate and sulfate, 0.5 μ g/L perchlorate can be detected. The column is therefore used in perchlorate analysis in accordance with EPA standard 314.

The column can be used with or without chemical suppression. When p-cyanophenol is used as the eluent, it is recommended that the Metrosep RP Trap 1 - 50/4.0 (6.1014.100) be installed between pulsation absorber and injection valve.

Applications

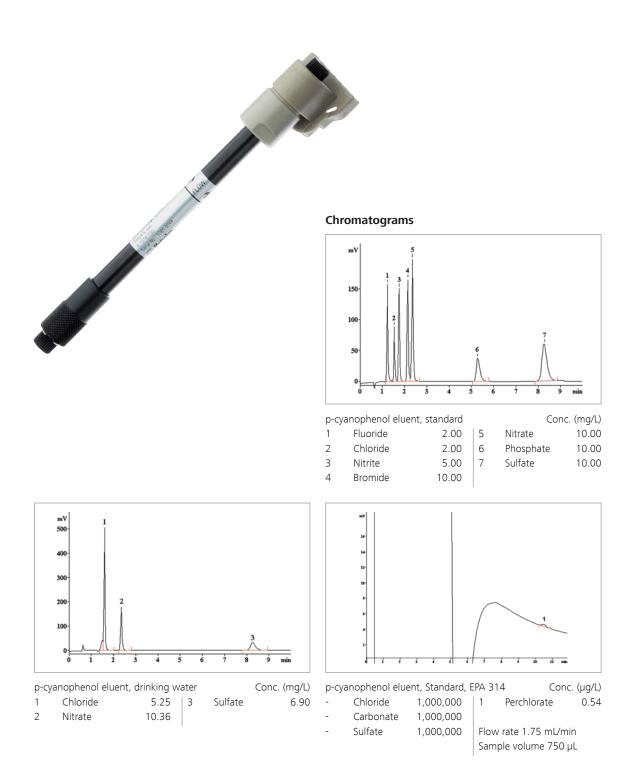
- Rapid separations
- Complex sample matrices
- EPA 314
- Detection of perchlorate

Technical information

Substrate	Monolithic silica gel
Column dimensions	100 x 4.6 mm
Column body	PEEK
Standard flow	2.0 mL/min
Maximum flow	5.0 mL/min
Maximum pressure	20 MPa
Particle size	Monolith with 2 μ m macro-
	pores and 13 nm mesopores
Organic modifier	05% (methanol or
	acetonitrile only)
pH range	28
Capacity	74 µmol (Cl⁻)

Eluent

p-cyanophenol eluent (standard eluent) p-cyanophenol KOH


2859 mg/2 L

12.0 mmol/LpH = 7.4 ± 0.1

Care

Preparation Rinse the column with eluent for 0.5...1 h. Storage In the eluent

Regeneration Rinse the column with a maximum of 5% acetonitrile at a flow rate of 0.5 mL/min for 30 min.

Ordering information	
Metrosep Dual 4 - 100/4.6	6.1016.030
Guard column kit for the Metrosep Dual 4, comprised of three guard column cartridges and	
one guard column cartridge holder	6.1016.500
Guard column cartridges for the Metrosep Dual 4 (3 pcs.)	6.1016.510

Metrosep A Supp 4 - 250/4.0 (6.1006.430)

The Metrosep A Supp 4 - 250/4.0 is an extremely robust column with very good separation properties. The separation phase is comprised of polyvinyl alcohol particles with quaternary ammonium groups and a diameter of 9 μ m. This structure guarantees great stability and a greater tolerance to very small particles which could pass through the integrated filter plate. The Metrosep A Supp 4 - 250/4.0 has a medium ion-exchange capacity; sulfate elutes after 12.5 minutes. The number of plates which can be achieved with this separation column is higher than those on the Metrosep Anion Dual 2 - 75/4.6. The A Supp 4 - 250/4.0 is particularly suitable for all routine tasks in water analysis. Its universal applicability makes it the standard column for the 883 Basic IC plus.

To protect the IC separation column – even though it is not particularly sensitive to contaminants – we recommend the use of the Metrosep A Supp 4/5 Guard/4.0 or the A Supp 4/5 S-Guard/4.0.

Applications

- Standard anions
- Water analysis
- Difficult matrices
- Critical samples
- Iodide

Technical information

Substrate	Polyvinyl alcohol with quaternary
	ammonium groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	12 MPa
Particle size	9 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	37 µmol (Cl⁻)

Eluent

Without chemical suppression	on		
Phthalic acid eluent	Phthalic acid	1660 mg/2 L	5.0 mmol/L
(standard eluent)	Acetone	40 mL/2 L	2.0%
	TRIS		pH = 4.4
With chemical suppression			
Carbonate eluent	Sodium hydrogen carbonate	286 mg/2 L	1.7 mmol/L
(standard eluent)	Sodium carbonate	382 mg/2 L	1.8 mmol/L
Carbonate eluent, mod.	Sodium hydrogen carbonate	672 mg/2 L	4.0 mmol/L
	Sodium carbonate	212 mg/2 L	1.0 mmol/L

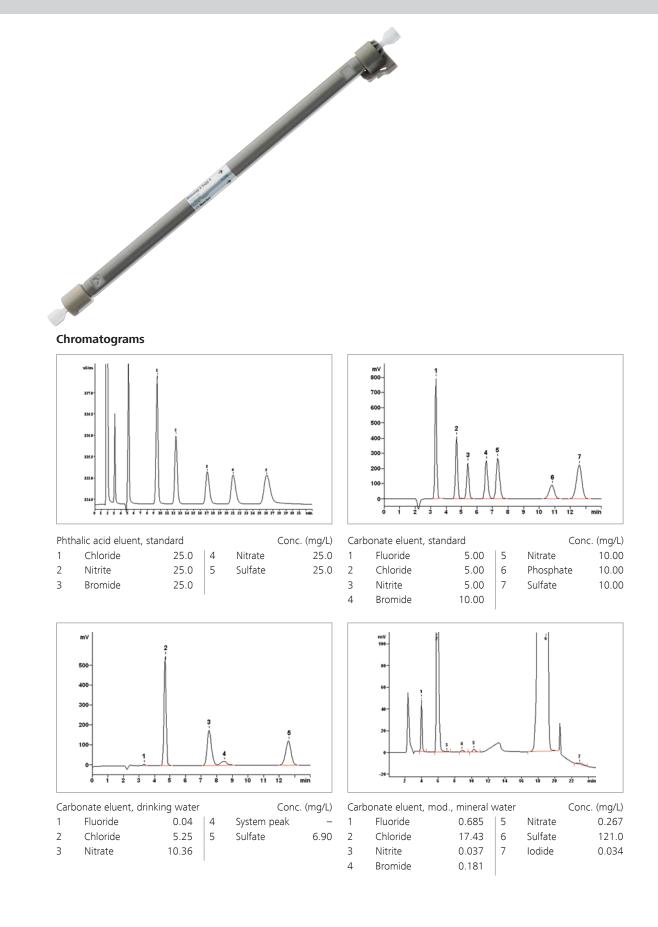
Care

Regeneration

Contamination with hydrophilic ions:

a) Rinse with ultrapure water (15 min at 0.5 mL/min)

b) Rinse with 10x concentrated eluent


(60 min at 0.5 mL/min)

c) Rinse with ultrapure water (15 min at 0.5 mL/min)

d) Rinse with eluent (60 min at 0.5 mL/min)

Contamination with lipophilic ions:

a) Rinse with ultrapure water (15 min at 0.5 mL/min)
b) Rinse with 5% acetonitrile (10 min at 0.5 mL/min)
c) Rinse with 100% acetonitrile (60 min at 0.5 mL/min)
d) Rinse with 50% acetonitrile (10 min at 0.5 mL/min)
e) Rinse with ultrapure water (30 min at 0.5 mL/min)
f) Rinse with eluent (60 min at 0.5 mL/min)

Ordering information	
Metrosep A Supp 4 - 250/4.0	6.1006.430
Metrosep A Supp 4/5 Guard/4.0	6.1006.500
Metrosep A Supp 4/5 S-Guard/4.0	6.1006.540

Separation columns

IC anion-separation columns for analyses with chemical suppression

Phenomenex Star-Ion A300[™] - 100/4.6 (6.1005.100)

The Star-Ion A300TM - 100/4.6 IC anion column's separation properties are based on the use of styrene-divinylbenzene resin. The separation between the «water dip» and chloride is not as sharp as with acrylate-based and vinyl alcohol-based columns. The Star-Ion A300TM - 100/4.6 features lower separation efficiency in the fluoride range. This column nevertheless excels in its extremely short analysis times.

Standard anions can be determined in less than 8 minutes. Moreover, this column can be used to determine fluoride in the ppm range in the presence of very large amounts of lactate (Application Note S-37).

The system peak and high carbonate concentrations interfere with the integration of the chloride peak. It is therefore recommended that the «MCS» (Metrohm CO_2 Suppressor) be used.

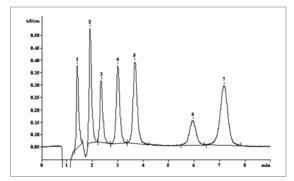
Applications

• Rapid separation of standard anions

- Fluoride in addition to an excess of lactate
- Chromate

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	100 x 4.6 mm
Column body	PEEK
Standard flow	1.5 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	7 MPa
Particle size	7 µm
Organic modifier	0%
pH range	112
Capacity	21 µmol (Cl⁻)


Eluents

Carbonate eluent	Sodium hydrogen carbonate	286 mg/2 L	1.7 mmol/L
(standard eluent)	Sodium carbonate	382 mg/2 L	1.8 mmol/L
Carbonate eluent	Sodium hydrogen carbonate	841 mg/2 L	5.0 mmol/L
(modified)	Sodium carbonate	743 mg/2 L	3.5 mmol/L

Care

RegenerationStorRinse for 30 min at 1.0 mL/min with a solution con-
taining 18 mmol/L Na_2CO_3 (1908 mg) and 17 mmol/LIn the
NaHCO_3 (1428 mg).

| 5

6

7

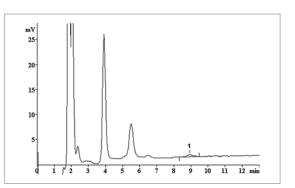
0.50

0.50

1.00

Carbonate eluent, standard

- 1 Fluoride 0.20
- 2 Chloride 3 Nitrite


. . .

4 Bromide

Conc. (mg/L) ate 1.00

Nitrate 1.00 Phosphate 1.00

Sulfate 1.00

Carbonate eluent, modified, dye, Dil. 1:100 1 Chromate (VI) 3.24

Conc. (mg/L)

Ordering information		
Phenomenex Star-Ion A300 [™] - 1	100/4.6	

Metrosep RP 2 Guard/3.5

Replacement filters for RP 2 Guard/3.5 (10 pcs.)

6.1005.100 6.1011.030 6.1011.130

Phenomenex Star-Ion A300[™] HC - 100/10.0 (6.1005.110)

The high-capacity version of the Star-Ion A300™ IC anion column is particularly suitable for the direct determination of bromate in the µg/L range. With post-column reaction and UV detection, bromate can be determined with certainty, even in the ng/L range in accordance with EPA 326 or DIN EN ISO 11206, respectively.

Thanks to its high capacity, sample preparation can frequently be eliminated. Using the standard carbonate eluent chloride elutes before bromate on the Phenomenex Star-Ion A300[™] HC - 100/10.0. The system peak and high carbonate concentrations interfere with the integration of the chloride peak. It is therefore recommended that the «MCS» (Metrohm CO₂ Suppressor) be used.

Applications

• Standard anions

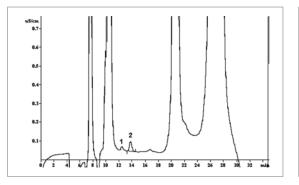
• BrO₃⁻ for samples with high ionic strength

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	100 x 10.0 mm
Column body	PEEK (steel jacket)
Standard flow	3.0 mL/min
Maximum flow	5.0 mL/min
Maximum pressure	7 MPa
Particle size	7 µm
Organic modifier	0%
pH range	112
Capacity	94 µmol (Cl⁻)

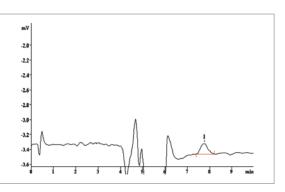
Eluents

Carbonate eluent	Sodium hydrogen carbonate	286 mg/2 L	1.7 mmol/L	
(standard eluent)	Sodium carbonate	382 mg/2 L	1.8 mmol/L	
Bromate eluent	Sulfuric acid (c = 1 mol/L)	200 mL/2 L	100 mmol/L	
	Ammonium heptamolybdate	19.3 mL/2 L	19.3 µmol/L	
	(NH ₄) ₆ Mo ₇ O ₂₄ · 4 H ₂ O			
	(c = 2.0 mmol/L)			


Care

Regeneration Rinse for 30 min at 1.0 mL/min with a solution containing 18 mmol/L $\rm Na_2\rm CO_3$ (1908 mg) and 17 mmol/L NaHCO₃ (1428 mg).

Storage


In the eluent

Carbonate eluent, mineral water. Dil. 1:100, Ag⁺-, H⁺-cartridge 1 Nitrite n.q. 48.0

2 Bromate Conc. (µg/L)

Bromate eluent, drinking water sample, UV detection $(\lambda = 352 \text{ nm})$, DIN EN ISO 11206 Conc. (µg/L) Bromate 0.128 1

Ordering information

Phenomenex Star-Ion A300[™] HC - 100/10.0 6.1005.110 PEEK pressure screw (long) for the A300 \mbox{HC} 6.2744.090 Metrosep RP 2 Guard/3.5 6.1011.030 Replacement filters for RP 2 Guard/3.5 (10 pcs.) 6.1011.130

Metrosep A Supp 1 - 250/4.6 (6.1005.300)

The Metrosep A Supp 1 - 250/4.6 is a universal anion column which is characterized by medium capacity and special selectivity. With this column it is possible to process samples with great differences in concentration. For example, 4 µg/L of sulfate can be determined in a solution containing 150 g/L sodium chloride. An additional advantage is that bromide elutes after nitrate. Particularly in the area of oxohalide analysis, the A Supp 1 - 250/4.6 excels in its outstanding separation properties. Pressure fluctuations, constantly changing eluents, and large sample through-put do not influence the separating efficiency of this column, even after very long periods. It is the «workhorse» for development and routine laboratories.

Applications

- Conductivity detection
- Great differences in concentration
- High ionic strength
- ClO₂⁻, ClO₃⁻, ClO₄⁻
- Amperometric detection
- CN⁻
 S²⁻

Technical information

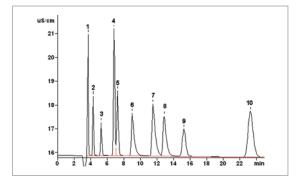
recimical information	
Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	250 x 4.6 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	2.5 mL/min
Maximum pressure	15 MPa
Particle size	7 µm
Organic modifier	0100%
pH range	113
Capacity	12 µmol (Cl⁻)

Eluents

Carbonate eluent	Sodium carbonate	636 mg/2 L	3.0 mmol/L
(standard eluent)			
Sodium hydroxide eluent	Sodium hydroxide (c = 10 mol/L)	20 mL/2 L	100 mmol/L

Care

Regeneration


Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L NaOH at 0.5 mL/min for 1 h.

Organic contaminants: Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Storage

In the eluent. For a longer period (weeks), store the column in a refrigerator at minimum +4 $^{\circ}\text{C}.$

5.00

5.00

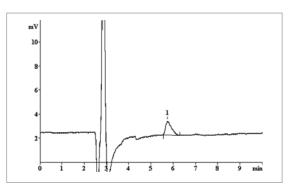
5.00

5.00

10

Carbonate eluent, standard

Fluoride 1 2 Chlorite


3 Bromate 4 Chloride

5 Nitrite

Conc. (mg/L) 10.00 2.00 | 6 Chlorate 7 Nitrate 10.00 8 Bromide 10.00 9 10.00 Phosphate

Sulfate

10.00

Sodium hydroxide eluent, standard, amperometric detection 4.0 Cyanide 1

Conc. (µg/L)

Ordering information

Metrosep A Supp 1 - 250/4.6 Metrosep A Supp 1 Guard/4.6 6.1005.300 6.1005.340

Metrosep A Supp 1 HS - 50/4.6 (6.1005.350)

The Metrosep A Supp 1 HS - 50/4.6 permits the separation of standard anions in a very short time. The Metrosep A Supp 1 HS - 50/4.6 is also the column of choice for the determination of only a few anions in an uncomplicated sample matrix. For example, the analysis of phosphate as well as chloride and sulfate in cola beverages can be carried out in less than three minutes.

Applications

- Cl⁻, PO₄³⁻, SO₄²⁻ in cola beverages
- Very rapid separation
- Standard anions in uncomplicated sample matrices

Technical information	
Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	50 x 4.6 mm
Column body	PEEK
Standard flow	1.3 mL/min
Maximum flow	2.5 mL/min
Maximum pressure	4.0 MPa
Particle size	7 µm
Organic modifier	0100%
pH range	113
Capacity	3.1 µmol (Cl⁻)

Eluents

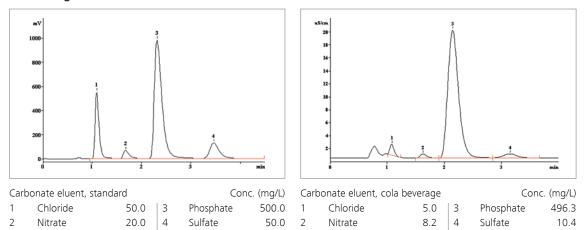
Carbonate eluent (standard eluent) Sodium carbonate

636 mg/2 L

3.0 mmol/L

Care

Regeneration


Rinse with 15 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.25 mL/min. Then rinse with 0.1 mol/L NaOH at 0.25 mL/min for 1 h.

Organic contaminants: Rinse with 70% methanol at 0.4 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Storage

In the eluent. For a longer period (weeks), store the column in a refrigerator at minimum +4 $^{\circ}$ C.

Ordering information	
Metrosep A Supp 1 HS - 50/4.6	6.1005.350
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130

57

Metrosep A Supp 3 - 250/4.6 (6.1005.320)

The Metrosep A Supp 3 - 250/4.6 solves separation problems in aqueous and organic media. It can be used reliably with a wide range of eluents – even those with high proportions of organic solvents. With the Metrosep A Supp 3 - 250/4.6, highly demanding samples can be analyzed in routine operation, for example the measurement of biological samples or the determination of inorganic anions in organic matrices. Polyphosphates can be separated effectively with the aid of a sodium hydroxide gradient on the Metrosep A Supp 3 - 250/4.6. In isocratic operation, the column is also suitable for the separation of sulfite, sulfate, and thiosulfate in less than 20 min.

Applications

Cubatrata

- SCN⁻, SO₃²⁻, SO₄²⁻, S₂O₃²⁻
- Polyphosphates
- Organic matrices

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	250 x 4.6 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	15 MPa
Particle size	9 µm
Organic modifier	0100%
pH range	113
Capacity	35 µmol (Cl⁻)

Dely sty man a /div insy (lb a

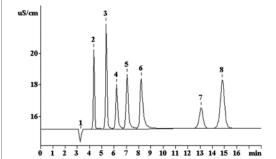
Eluent

Carbonate eluent	Sodium hydrogen carbonate	286 mg/2 L	1.7 mmol/L
(standard eluent)	Sodium carbonate	382 mg/2 L	1.8 mmol/L

Care

Regeneration

Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L NaOH at 0.5 mL/min for 1 h.


Organic contaminants:

Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Storage

In the eluent. For a longer period (weeks), store the column in a refrigerator at minimum +4 $^{\circ}\text{C}.$

_

7

2.00

5.00

5.00

uS/cm 26 24 22 20 18 2 1 16 3 4 5 10 11 12 13 14 15 16 ź ż 8 ģ Ó i Conc (mall) Ca

Carbonate eluent, standard

1 Injection peak Fluoride 2 3 Chloride

Nitrite

4

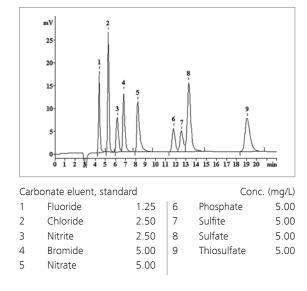
Conc. (mg/L) 5 Bromide 6 Nitrate Phosphate 8 Sulfate

10.00

10.00

10.00

10.00


1

2

3

arbonate eluent, drinki	ng water		
Injection peak	-	4	S
Fluoride	0.04	5	Ν
Chloride	5.24	6	S

	Conc.	(mg/L)
System	peak	-
Nitrate		10.25
Sulfate		6.92

Ordering information			
Metrosep A Supp 3 - 250/4.6	6.1005.320		
Metrosep RP 2 Guard/3.5	6.1011.030		
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130		

Metrosep A Supp 5 - 50/4.0 (6.1006.550)

The Metrosep A Supp 5 - 50/4.0 separates the seven standard anions in less than six minutes. Even fluoride is still separated from the injection peak and can be integrated perfectly. Like all columns in the A-Supp-5 product range, the column, which is based on a polyvinyl alcohol polymer, is characterized by high plate numbers and therefore by outstanding separating efficiency. The Metrosep A Supp 5 - 50/4.0 is the column of choice when simple separation tasks must be solved in a short time – and that without having to sacrifice very low detection limits.

Applications

- Rapid separation of standard anions
- Simple sample matrices
- Method development

Technical information

Substrate	Polyvinyl alcohol with qua-
	ternary ammonium groups
Column dimensions	50 x 4.0 mm
Column body	PEEK
Standard flow	0.7 mL/min
Maximum flow	0.8 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifier	0100%, (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	18 µmol (Cl⁻)

Deliveritari el este el conte

Eluent

Carbonate eluent	Sodium hydrogen carbonate	168 mg/2 L	1.0 mmol/L
(standard eluent)	Sodium carbonate	678 mg/2 L	3.2 mmol/L
Perchlorate eluent	Sodium carbonate	3.178 g/2 L	15.0 mmol/L
	Acetone	200 mL/2 L	10%

Care

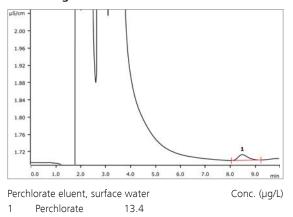
Regeneration

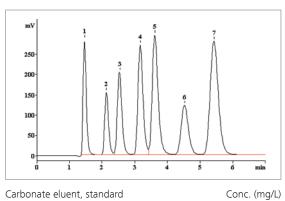
Contamination with hydrophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min)
- b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

Contamination with lipophilic ions:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min)
- c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
- d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)
- e) Rinse with ultrapure water (50 min at 0.3 mL/min)
- f) Rinse with eluent (100 min at 0.3 mL/min)


With shifted system peak (regeneration method with column oven):


- a) Rinse with concentrated eluent 1 mol/L Na_2CO_3 (25 min at 0.4 mL/min)
- b) Maintain for 10...12 h at 45...50 °C (without rinsing)
- c) Rinse with standard eluent (at least 40 min at 0.4 mL/min)

Storage

In the eluent

2.00 | 5

5.00

5.00

10.00

6

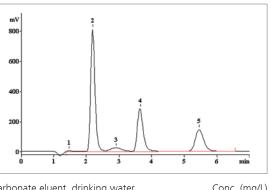
7

Nitrate

Sulfate

Phosphate

10.00


10.00

10.00

Carbonate eluent, standard

- 1 Fluoride
- 2 Chloride 3 Nitrite

4 Bromide

Carbonate eluent, drinking water					Conc. (mg/L)
1	Fluoride	0.04	4	Nitrate	10.36
2	Chloride	5.25	5	Sulfate	6.90
3	System peak	-			

Ordering information

Metrosep A Supp 5 - 50/4.0 Metrosep A Supp 4/5 Guard/4.0 Metrosep A Supp 4/5 S-Guard/4.0 6.1006.550 6.1006.500 6.1006.540

Metrosep A Supp 5 - 100/4.0 (6.1006.510)

The Metrosep A Supp 5 - 100/4.0 allows highly efficient, rapid separations. This property makes the Metrosep A Supp 5 - 100/4.0 the standard column for short analysis times and the determination of late eluting anions (e.g. perchlorate).

Applications

- Conductivity detection
- Standard anions
- F⁻, Cl⁻, Br⁻, l⁻, ClO₂⁻, ClO₃⁻, ClO₄⁻, BrO₃⁻
- ClO₄⁻
- Cr(VI) (CrO₄²⁻), I⁻
- Method development
- Universal applications
- Determination of phosphate in cola beverages
- Rapid separation
- Amperometric detection
- NO₂⁻, ClO₂⁻
- S₂O₃²⁻, SCN⁻, I⁻

Technical information		Maximum pressure	15 MPa
Substrate	Polyvinyl alcohol with qua-	Particle size	5 µm
	ternary ammonium groups	Organic modifier	0100%, (particularly
Column dimensions	100 x 4.0 mm		acetone, acetonitrile,
Column body	PEEK		methanol)
Standard flow	0.7 mL/min	pH range	312
Maximum flow	0.8 mL/min	Temperature range	2060 °C
		Capacity	32 µmol (Cl⁻)

Eluent

Carbonate eluent	Sodium hydrogen carbonate	168 mg/2 L	1.0 mmol/L
(standard eluent)	Sodium carbonate	678 mg/2 L	3.2 mmol/L
Cola eluent	Sodium hydrogen carbonate	504 mg/2 L	3.0 mmol/L
	Sodium carbonate	1484 mg/2 L	7.0 mmol/L

Care

Regeneration

Contamination with hydrophilic ions:

a) Rinse with ultrapure water (25 min at 0.3 mL/min)

b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)

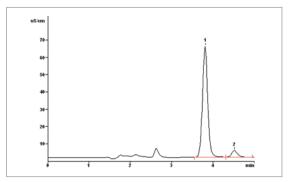
c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min) $\,$

Contamination with lipophilic ions:

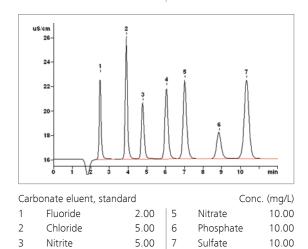
a) Rinse with ultrapure water (25 min at 0.3 mL/min)
b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min)
c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)

e) Rinse with ultrapure water (50 min at 0.3 mL/min)f) Rinse with eluent (100 min at 0.3 mL/min)

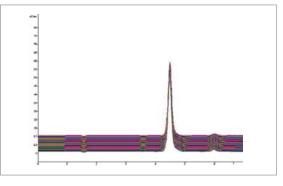
With shifted system peak (regeneration method with column oven):


- a) Rinse with concentrated eluent 1 mol/L $\rm Na_2CO_3$ (25 min at 0.4 mL/min)
- b) Maintain for 10...12 h at 45...50 °C (without rinsing)

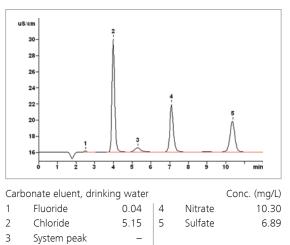
c) Rinse with standard eluent (at least 40 min at 0.4 mL/min)



4


Bromide

Cola eluent, cola beverage Conc. (mg/L) 1 Phosphate 532.53 | 2 Sulfate 36.63



10.00

RSD retention time < 0.1% RSD concentration < 0.2%

Number of analyses n = 400

6.1006.510	
6.1006.500	
6.1006.540	
6.1020.520	

Metrosep A Supp 5 - 150/4.0 (6.1006.520)

The 150 mm version of the Metrosep A Supp 5 is characterized by its very good separation properties. High plate numbers and excellent peak symmetries simplify working in the lower μ g/L range. The particle size of 5 μ m makes a decisive contribution to the separating efficiency of this column. The Metrosep A Supp 5 -150/4.0 offers the optimum combination of selectivity and capacity, with which even complex separation tasks can be solved within a short time. This characteristic makes the Metrosep A Supp 5 - 150/4.0 one of the best universally applicable standard IC columns.

Applications

- Standard anions
- F⁻, Cl⁻, Br⁻, l⁻
- ClO₂⁻, ClO₃⁻, ClO₄⁻, BrO₃⁻
- Cr(VI) (CrO4²⁻)
- Method development
- Difficult matrices
- Difficult separation problems

Technical information

Substrate	Polyvinyl alcohol with qua-
	ternary ammonium groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.7 mL/min
Maximum flow	0.8 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	52 µmol (Cl⁻)

Eluents

Carbonate eluent	Sodium hydrogen carbonate	168 mg/2 L	1.0 mmol/L
(standard eluent)	Sodium carbonate	678 mg/2 L	3.2 mmol/L
Chromate eluent	Sodium hydrogen carbonate	672 mg/2 L	4.0 mmol/L
	Sodium carbonate	2714 mg/2 L	12.8 mmol/L

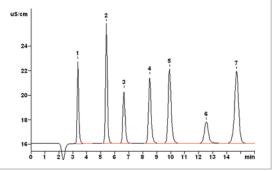
Care

Regeneration

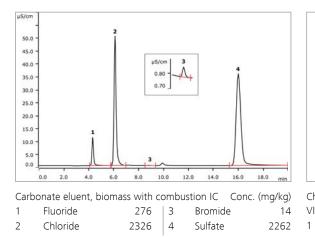
Contamination with hydrophilic ions:

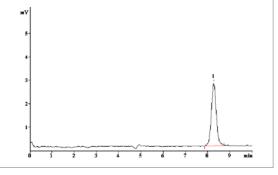
a) Rinse with ultrapure water (25 min at 0.3 mL/min)

- b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)


Contamination with lipophilic ions:

a) Rinse with ultrapure water (25 min at 0.3 mL/min)
b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min)
c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min)
d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)


e) Rinse with ultrapure water (50 min at 0.3 mL/min)f) Rinse with eluent (100 min at 0.3 mL/min)


- With shifted system peak (regeneration method with column oven):
- a) Rinse with concentrated eluent 1 mol/L Na_2CO_3 (25 min at 0.4 mL/min)
- b) Maintain for 10...12 h at 45...50 °C (without rinsing)
- c) Rinse with standard eluent (at least 40 min at 0.4 mL/min)

Carbonate eluent, standard				Cor	nc. (mg/L)
1	Fluoride	2.00	5	Nitrate	10.00
2	Chloride	5.00	6	Phosphate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	Bromide	10.00			

Ordering information	
Metrosep A Supp 5 - 150/4.0	6.1006.520
Metrosep A Supp 4/5 Guard/4.0	6.1006.500
Metrosep A Supp 4/5 S-Guard/4.0	6.1006.540

Metrosep A Supp 5 - 250/4.0 (6.1006.530)

The high-performance separation column from Metrohm with an extremely high number of plates for the most demanding separation tasks. Even complex separation problems can be solved easily and reproducibly with the Metrosep A Supp 5 - 250/4.0. The high capacity of the column allows, for example, the detection of 1 µg/L bromate along with 150 mg/L chloride without sample preparation. The range of applications possible with this column far exceeds the detection of standard anions. The Metrosep A Supp 5 - 250/4.0 is the column of choice when it comes to reliable monitoring of the high purity standards in the semiconductor industry or of the boiler feed water of power plants.

Applications

- Standard anions
- F⁻, Cl⁻, Br⁻, l⁻
- ClO₂⁻, ClO₃⁻, ClO₄⁻, BrO₃⁻
- ClO₄ at high ionic strength
- BrO₃⁻ at high ionic strength
- Method development
- Universal applications

Technical information

- Difficult matrices
- Difficult separation problems
- Applications with gradient

iced water of power plants			
		Substrate	Polyvinyl alcohol with qua-
			ternary ammonium groups
		Column dimensions	250 x 4.0 mm
		Column body	PEEK
		Standard flow	0.7 mL/min
		Maximum flow	0.8 mL/min
		Maximum pressure	15 MPa
		Particle size	5 µm
		Organic modifier	0100% (particularly
			acetone, acetonitrile,
			methanol)
		pH range	312
		Temperature range	2060 °C
		Capacity	85 µmol (Cl⁻)
Eluent			
Carbonate eluent	Sodium hydrogen carbonate	168 mg/2 L	1.0 mmol/L
(standard eluent)	Sodium carbonate	678 mg/2 L	3.2 mmol/L

Care

Regeneration

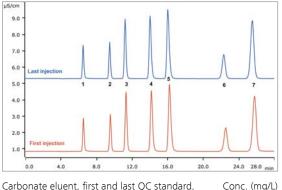
Contamination with hydrophilic ions:

a) Rinse with ultrapure water (25 min at 0.3 mL/min)

b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)

c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)

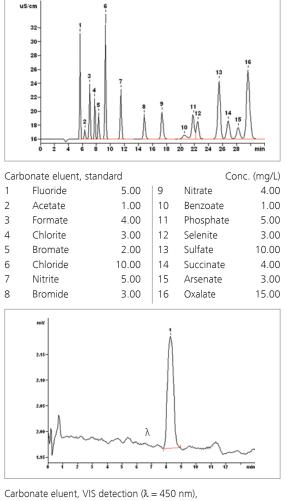
Contamination with lipophilic ions:

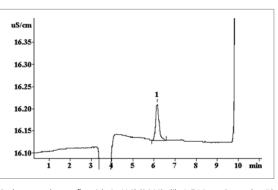

a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 5% acetonitrile (20 min at 0.3 mL/min) c) Rinse with 100% acetonitrile (60 min at 0.3 mL/min) d) Rinse with 50% acetonitrile (10 min at 0.3 mL/min)

e) Rinse with ultrapure water (50 min at 0.3 mL/min) f) Rinse with eluent (100 min at 0.3 mL/min)

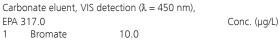
With shifted system peak (regeneration method with column oven):

- a) Rinse with concentrated eluent 1 mol/L Na₂CO₃ (25 min at 0.4 mL/min)
- b) Maintain for 10...12 h at 45...50 °C (without rinsing)


c) Rinse with standard eluent (at least 40 min at 0.4 mL/min)



The second se


Carbo	CONC. (ING/L)				
2150	injections				
1	Fluoride	1.00	5	Nitrate	10.00

2	Chloride	2.00	6	Phosphate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	Bromide	10.00			

Carbonate eluent, fluoride in HCl (32%) dil. 1:500 Conc. (µg/L) 1 Fluoride 20.0

Ordering information

Metrosep A Supp 5 - 250/4.0 Metrosep A Supp 4/5 Guard/4.0 Metrosep A Supp 4/5 S-Guard/4.0 6.1006.530 6.1006.500 6.1006.540

Metrosep A Supp 7 - 150/4.0 (6.1006.620)

The Metrosep A Supp 7 - 150/4.0 is the shorter A Supp 7 column. It allows similarly complex separation tasks to be solved the same way as with the 250 mm version, with no significant loss in separating efficiency. Chlorite and bromate can thus be easily separated from standard anions with this separation column. With the Metrosep A Supp 7 - 150/4.0, these ions are determined with certainty and precision down to the lower μ g/L range. The high detection sensitivity is achieved through the use of the 5 μ m polyvinyl alcohol polymer, with which extremely high plate numbers and thus outstanding separation and detection properties are achieved. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

Applications

- Standard anions
- Determination of standard anions and ClO $_{\rm 2}^-$, ClO $_{\rm 3}^-$, BrO $_{\rm 3}^-$
- Complex separation tasks
- Applications with gradient

Technical information

Substrate	Polyvinyl alcohol with qua-
	ternary ammonium groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.7 mL/min
Maximum flow	1.0 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	76 µmol (Cl⁻)

Eluent

Carbonate eluent (standard eluent) Sodium carbonate

763 mg/2 L 3.6 mmol/L Column temperature 45 °C

Care

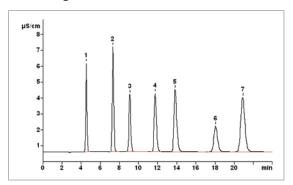
Regeneration

Contamination with low-valency hydrophilic ions:

a) Rinse with ultrapure water (25 min at 0.3 mL/min)

b) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)

c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min)


Contaminations with high-valency hydrophobic ions and organic contaminations:

- a) Rinse with ultrapure water (25 min at 0.3 mL/min)
 b) Rinse with 100% acetonitrile (20 min at 0.3 mL/min)
 c) Rinse with ultrapure water (25 min at 0.3 mL/min)
- d) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)
- e) Rinse with ultrapure water (25 min at 0.3 mL/min) f) Rinse with eluent (100 min at 0.3 mL/min)

Storage In the eluent at max. 8 °C

Chromatograms

Carbonate eluent, standard, 45 °C,

Fluoride 2 Chloride 3 Nitrite

Bromide

1

4

2.00 | 5 5.00 6 5.00 7

10.00

Nitrate Phosphate Sulfate

Conc. (mg/L)

10.00

10.00

10.00

µ\$/cm 12-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 min

Gradient: Carbonate eluent 1...6 mmol/L, standard, 45 °C Conc. (mg/L) Fluoride 1 5.00 | 11 Nitrate 5.00 2 Glycolate Dibromoacetate 5.00 5.00 12 3 Propionate 5.00 Phosphate 5.00 13 4 Butyrate 5.00 14 Sulfate 5.00 5 Methacrylate 5.00 15 Tartrate 5.00 6 Monochloroacetate 5.00 16 Selenate 5.00 7 Chloride 5.00 17 Arsenate 5.00 Nitrite 8 5.00 18 lodide 5.00 5.00 9 Bromide 19 Thiosulfate 5.00 10 Dichloroacetate 5.00

Ordering	information
----------	-------------

J I I I I I I I I I I I I I I I I I I I	
Metrosep A Supp 7 - 150/4.0	6.1006.620
Metrosep A Supp 4/5 Guard/4.0	6.1006.500
Metrosep A Supp 4/5 S-Guard/4.0	6.1006.540
Metrosep A Supp 16 Gurad/4.0	6.1031.500
Metrosep A Supp 16 S-Guard/4.0	6.1031.510
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130

Metrosep A Supp 7 - 250/4.0 (6.1006.630)

Disinfection by products from water purification are suspected carcinogens. Oxohalides have therefore become the subject of many investigations and standards (e.g. EPA 300.1 Part B, EPA 317.0, EPA 326, DIN EN ISO 11206). Of primary concern is bromate, which forms from bromide during the ozonization of drinking water. The Metrosep A Supp 7 - 250/4.0 is a high-performance separation column for the parallel determination of standard anions, oxohalides, and dichloroacetic acid. With this column, these ions are determined with certainty and precision down to the lower μ g/L range. The high detection sensitivity is achieved through the use of the 5 µm polyvinyl alcohol polymer, with which extremely high plate numbers and thus outstanding separation and detection properties are achieved. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

Applications

- Standard anions
- EPA Method 300.1 Part B, simultaneous determination of standard anions and CIO₂⁻, CIO₃⁻, BrO₃⁻ and DCA (dichloroacetic acid)

-

- Isocratic separation of glycolate, acetate, and formate
- Complex separation tasks
- Applications with gradient

Technical information

Substrate	Polyvinyl alcohol with qua-
	ternary ammonium groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	0.7 mL/min
Maximum flow	1.0 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	110 µmol (Cl⁻)

Eluent			
Carbonate eluent	Sodium carbonate	763 mg/2 L	3.6 mmol/L
(standard eluent)		Column temperature 45 °C	
Carbonate eluent	Sodium carbonate	763 mg/2 L	3.6 mmol/L
(modified)	Acetone	40 mL/2 L	2%
		Column temperature 45 °C	

Care

Regeneration

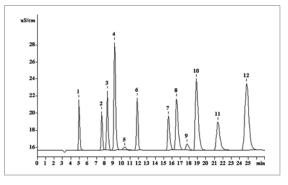
Contamination with low-valency hydrophilic ions:

a) Rinse with ultrapure water (25 min at 0.3 mL/min) b) Rinse with 10x concentrated eluent (100 min at

0.3 mL/min)

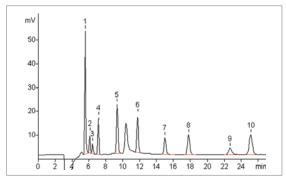
c) Rinse with ultrapure water (25 min at 0.3 mL/min) d) Rinse with eluent (100 min at 0.3 mL/min) Contaminations with high-valency hydrophobic ions and organic contaminations:

a) Rinse with ultrapure water (25 min at 0.3 mL/min)


b) Rinse with 100% acetonitrile (20 min at 0.3 mL/min)

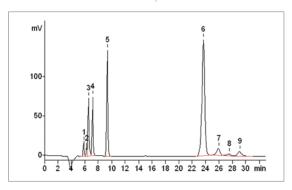
c) Rinse with ultrapure water (25 min at 0.3 mL/min)d) Rinse with 10x concentrated eluent (100 min at 0.3 mL/min)

e) Rinse with ultrapure water (25 min at 0.3 mL/min) f) Rinse with eluent (100 min at 0.3 mL/min)

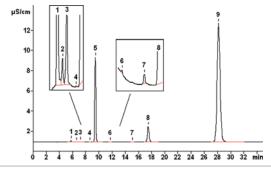

Storage

In the eluent at max. 8 °C

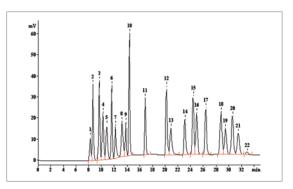
Carbonate eluent, standard, 45 °C, EPA 300.1,


Cui						
Parts 1 and 2 (without MCS) Conc. (mg/						
1	Fluoride	2.00	7	Bromide	10.00	
2	Chlorite	10.00	8	Chlorate	20.00	
3	Bromate	20.00	9	DCA	5.00	
4	Chloride	3.00	10	Nitrate	10.00	
5	System peak	-	11	Phosphate	20.00	
6	Nitrite	10.00	12	Sulfate	15.00	

Carbonate eluent, nuclear power plant secondary circuit (simulated), 45 $^{\circ}$ C


secon	dary circuit (simulate	ed), 45
1	Fluoride	2.04
2	Glycolate	2.05
3	Acetate	4.14
4	Formate	2.04
5	Chloride	2.09

ł	Jianit,		
С	С		Conc. (µg/L)
	6	Nitrite	2.26
	7	Bromide	2.06
	8	Nitrate	2.12
	9	Phosphate	e 1.91
	10	Sulfate	2.18



Carbonate eluent, mod. 1, «Bayer liquor»

after	inline neutralization		35 °C	Conc	. (mg/L)
1	Fluoride	0.35	6	Sulfate	22.59
3	Acetate	9.13	7	Malonate	3.87
4	Formate	3.71	8	Succinate	1.93
5	Chloride	5.66	9	Oxalate	2.07

Cark	ponate eluent, d	rinking water,	45 °(C, EPA 300.	1,
Part	s 1 and 2 (with	MCS)			Conc. (mg/L)
1	Fluoride	0.099	6	Nitrite	0.002
2	Acetate	n.q.	7	Bromide	0.008
3	Formate	n.q.	8	Nitrate	4.378
4	Bromate	0.002	9	Sulfate	35.62
5	Chloride	6.94			

Gradient: Carbonate eluent 1...5 mmol/L,

stand	ard, 45 °C		Conc. (mg/L)		
1	Galacturonate	10.00	12	Bromide	10.00
2	Fluoride	2.00	13	DCA	10.00
3	Glycolate	10.00	14	Nitrate	5.00
4	Acetate	10.00	15	Phosphite	10.00
5	Propionate	10.00	16	Phosphate	10.00
6	Formate	5.00	17	Sulfate	5.00
7	Pyruvate	10.00	18	Tartrate	10.00
8	Methacrylate	10.00	19	Selenate	5.00
9	Monochloroacetate	5.00	20	Oxalate	5.00
10	Chloride	5.00	21	Arsenate	10.00
11	Nitrite	5.00	22	n. ident.	-

Ordering information	
Metrosep A Supp 7 - 250/4.0	6.1006.630
Metrosep A Supp 4/5 Guard/4.0	6.1006.500
Metrosep A Supp 4/5 S-Guard/4.0	6.1006.540
Metrosep A Supp 16 Gurad/4.0	6.1031.500
Metrosep A Supp 16 S-Guard/4.0	6.1031.510
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130

Metrosep A Supp 10 - 50/4.0 (6.1020.050)

The Metrosep A Supp 10 - 50/4.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 μ m. This proven column concept optimized by Metrohm is characterized by its robust construction, high selectivity, and outstanding separating efficiency. High plate numbers and the favorable position of the system peak between fluoride and chloride complete its properties. Temperature, flow, and eluent composition can be used to modify the properties of the column to accommodate current applications directly.

The short length in conjunction with the relatively low overall capacity of this 50 mm column enable rapid separations of standard anions. They can be determined in less than nine minutes at a flow rate of 1.0 mL/min. The Metrosep A Supp 10 - 50/4.0 is well-suited to simple separation problems and uncomplicated matrices.

Applications

- Standard anions
- Separation of azide and nitrate
- Simple separation problems
- Uncomplicated matrices
- Short analysis times

Technical information

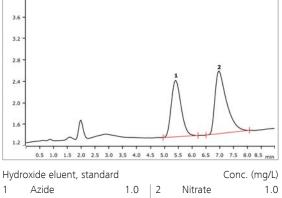
Substrate	Polystyrene/divinylbenzene copolymer with quaternary ammonium groups
Column dimensions Column body	50 x 4.0 mm PEEK
Standard flow	1.0 mL/min
Maximum flow Maximum pressure	2.0 mL/min 25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	17 µmol (Cl⁻)

Eluent

Carbonate eluent	Sodium hydrogen carbonate	840 mg/2 L	5.0 mmol/L
(standard eluent)	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
		Column temperature 45 °C	
Hydroxide eluent	Sodium hydroxide (30%)	20 mL/2 L	100 mmol/L

Care

Organic contaminants:


Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Chromatograms uS/cm

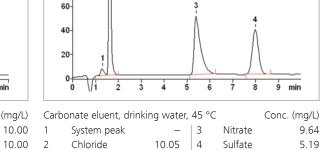
m٧

80

5.00 | 4

5.00 5

10.00 6


Bromide

Nitrate

Sulfate

10.00

10.00

Ordering inform	ation
Metrosep A Supp	10 - 50/4.0
	10 0 1/1

1

2

3

Chloride

Phosphate

Nitrite

Metrosep A Supp 10 Guard/4.0 Metrosep A Supp 10 S-Guard/4.0 6.1020.050 6.1020.500 6.1020.510

Metrosep A Supp 10 - 75/4.0 (6.1020.070)

The Metrosep A Supp 10 - 75/4.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 µm. Under standard conditions, phosphate elutes between nitrite and bromide. Applications can be optimized by modifying temperature, composition of the eluent and flow.

The capacity of the A Supp 10 - 75/4.0 has been optimized with respect to two aspects: matrix and speed. Baseline separation is achieved in samples with high ionic strength, e.g. for phosphate in cola beverages. Even in the presence of large quantities of nitrate and sulfate, the analysis time remains less than 7.5 minutes. High sample through-put is also of great importance in air analytics.

Applications

- Standard anions
- Air monitoring
- Aerosols with PILS/MARGA
- Separation of sulfite and sulfate
- Phosphate in addition to cyclamate in cola beverages

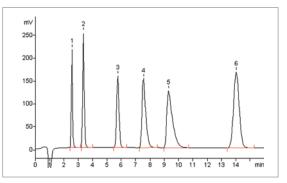
Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	75 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	22 µmol (Cl ⁻)

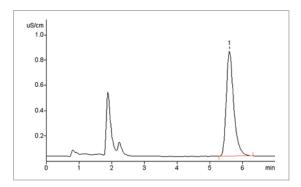
Eluent

Carbonate eluent (standard eluent)	Sodium hydrogen carbonate Sodium carbonate	840 mg/2 L 1060 mg/2 L Column temperature 45 °C	5.0 mmol/L 5.0 mmol/L
Cola eluent	Sodium hydrogen carbonate Sodium carbonate	67 mg/2 L 1695 mg/2 L Column temperature 30 °C	0.4 mmol/L 8.0 mmol/L
Carbonate eluent (modified)	Sodium hydrogen carbonate Sodium carbonate Sodium perchlorate	672 mg/2 L 1272 mg/2 L 1.2 mg/2 L	4.0 mmol/L 6.0 mmol/L 5.0 µmol/L

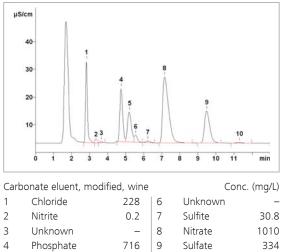
Care


Regeneration

Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L NaOH at 0.5 mL/min for 1 h.


Organic contaminants:

Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.



Carbonate eluent, standard, 45 °C,				Conc. (mg/L)	
1	Chloride	2.00	4	Bromide	10.00
2	Nitrite	5.00	5	Nitrate	10.00
3	Phosphate	10.00	6	Sulfate	10.00

Cola eluent, cola beverage, sample volume 250 nL, 30 °C 1 Phosphate 520.92

Conc. (mg/L)

10

_

Unknown

Ordering information	
Metrosep A Supp 10 - 75/4.0	6.1020.070
Metrosep A Supp 10 Guard/4.0	6.1020.500
Metrosep A Supp 10 S-Guard/4.0	6.1020.510
Metrosep A Supp 10 Guard HC/4.0	6.1020.520

5

Unknown

Metrosep A Supp 10 - 100/4.0 (6.1020.010)

The Metrosep A Supp 10 - 100/4.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 μ m. This column is characterized by high plate numbers and high selectivity. Sulfite and sulfate thus can be reliably separated in the eluent without the addition of organic modifiers. These characteristics are completed by great flexibility with respect to column temperature, flow, and the composition of the eluent.

The Metrosep A Supp 10 - 100/4.0 is the column of choice for routine applications. Its robust construction, excellent price-performance ratio, and very good separating efficiency, in conjunction with moderate chromatography times, make the Metrosep A Supp 10 - 100/4.0 a highly universal anion-separation column.

Applications

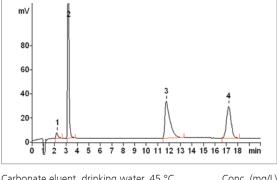
- Standard anions
- Separation of sulfite and sulfate
- Simple separation problems
- Uncomplicated matrices

Technical information

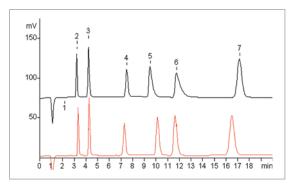
Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	37 µmol (Cl⁻)

Eluent

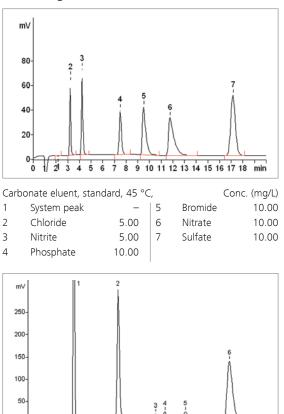
Carbonate eluent	Sodium hydrogen carbonate	840 mg/2 L	5.0 mmol/L
(standard eluent)	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
		Column temperature 45 °C	
Carbonate eluent	Sodium hydrogen carbonate	672 mg/2 L	4.0 mmol/L
(modified)	Sodium carbonate	1272 mg/2 L	6.0 mmol/L
	Sodium perchlorate	1.2 mg/2 L	5.0 µmol/L
		Room temperature	


Care

Regeneration


Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L NaOH at 0.5 mL/min for 1 h.

Organic contaminants: Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.


Carbonate eluent, drinking water, 4			45 °C		Conc. (mg/L)
1	System peak	-	3	Nitrate	9.64
2	Chloride	10.05	4	Sulfate	5.19

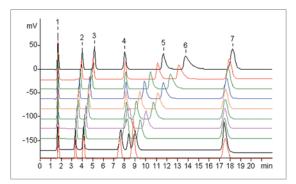
Carbonate eluent, top (black), temperature 45 °C, without 5 $\mu mol/L$ ClO_4^; bottom (red), temperature 25 °C, with 5 μ mol/L ClO₄⁻

temperature 25 °C, with 5 μ mol/L ClO ₄ ⁻			10_4^{-}	Conc.	(mg/L)
1	System peak	-	5	Bromide	10.00
2	Chloride	2.00	6	Nitrate	10.00
3	Nitrite	5.00	7	Sulfate	10.00

4 Phosphate 10.00

Carbonate eluent, mod., standard, room

2 3 4


0

0

tempe	erature				Conc. (mg/L)
1	Chloride	50.00	4	Bromide	10.00
2	Phosphate	10.00	5	Nitrate	10.00
3	Sulfite	10.00	6	Sulfate	50.00

5 6 7 8 9 10 11 12 13 14 15 16 17 18

mi

Carbonate eluent, temperature 30...70 ° C in 5 °C increments (from top to bottom), with CO₂ suppressor Conc. (mg/L)

1	Fluoride	2.00	5	Bromide	10.00
2	Chloride	2.00	6	Nitrate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	Phosphate	10.00			

6.1020.010
6.1020.500
6.1020.510
6.1020.520

77

Ordering information

Metrosep A Supp 10 - 100/4.0 Metrosep A Supp 10 Guard/4.0 Metrosep A Supp 10 S-Guard/4.0 Metrosep A Supp 10 Guard HC/4.0

Metrosep A Supp 10 - 250/4.0 (6.1020.030)

The Metrosep A Supp 10 - 250/4.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 μ m. The longest column of the A-Supp-10 product range offers the greatest selectivity and flexibility. Utilization of the MSM-HC is particularly recommended with longer chromatogram duration. Changes in temperature, flow, and composition of the eluent also enable a wide variety of separations of anions on this separation column.

Metrosep A Supp 10 - 250/4.0 has a very high capacity. It is suitable for samples with high ionic strength, for complex separation tasks and for analyzing samples in which great differences in concentration between the individual components are present.

Applications

- Standard anions
- Complex separation problems
- Difficult matrices
- Anions in concentrated acids
- Aggressive matrices

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary ammonium groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	100 µmol (Cl⁻)

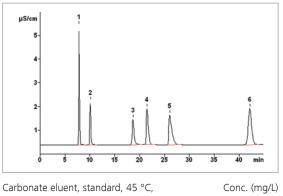
Eluent

Carbonate eluent (standard eluent)	Sodium hydrogen carbonate Sodium carbonate	840 mg/2 L 1060 mg/2 L Column temperature 45 °C	5.0 mmol/L 5.0 mmol/L
Carbonate eluent (modified 1)	Sodium hydrogen carbonate Sodium carbonate		5.0 mmol/L 5.0 mmol/L
(mounce r)	Acetone	50 mL	2.5%
		Column temperature 50 °C	
Carbonate eluent	Sodium hydrogen carbonate	672 mg/2 L	4.0 mmol/L
(modified 2)	Sodium carbonate	1272 mg/2 L	6.0 mmol/L
		Column temperature 45 °C	

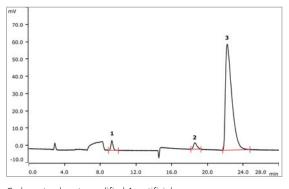
Care

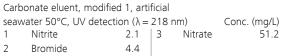
Regeneration

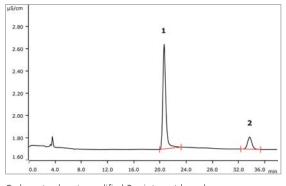
Column purification:


Rinse with 50 mL of a 0.05 mol/L solution of Na_4EDTA at a flow rate of 0.5 mL/min. Then rinse with 0.1 mol/L NaOH at 0.5 mL/min for 1 h.

Organic contaminants:


Rinse with 70% methanol at 1.0 mL/min for 12 h. The addition of 1% acetic acid may be useful.





	,	,	·		· J /
1	Chloride	5.00	4	Bromide	10.00
2	Nitrite	5.00	5	Nitrate	10.00
3	Phosphate	10.00	6	Sulfate	10.00

Carbonate eluent, modified 2, ointment based on glycol, 45 °C Conc. (mg/kg) 1 Sulfite 1028° 2 Sulfat n.q. (from metabisulfite) °calculated as metabisulfite

Ordering information

Metrosep A Supp 10 - 250/4.0 Metrosep A Supp 10 Guard/4.0 Metrosep A Supp 10 S-Guard/4.0 Metrosep A Supp 10 Guard HC/4.0

6.1020.030
6.1020.500
6.1020.510
6.1020.520

Metrosep A Supp 15 - 50/4.0 (6.1030.450)

The Metrosep A Supp 15 - 50/4.0 is suitable for lowcapacity separation problems. It is characterized by extremely short analysis times. The separation column is based on a surface-functionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity.

The Metrosep A Supp 15 - 50/4.0 is suitable for the rapid determination of a small number of anions. The determination of the three conventional anions Cl⁻, NO₃⁻, and SO_4^{2-} in drinking water requires only around 4 min.

Applications

- Standard anions
- Cl⁻, NO₃⁻, SO₄²⁻ in drinking water
- Simple separation problems
- Polyphosphates
- Rapid analysis
- Method development

Technical information

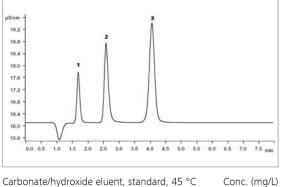
Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	50 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	15 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	16 µmol (Cl⁻)

Eluent

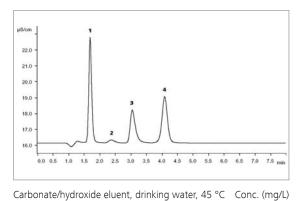
Carbonate/hydroxide eluent	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
(standard eluent)	Sodium hydroxide	2.4 mL/2 L	0.3 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Carbonate/hydroxide eluent A	Sodium carbonate	1590 mg/2 L	7.5 mmol/L
	Sodium hydroxide	8.0 mL/2 L	2.0 mmol/L
	(c = 0.25 mol/L)		
Carbonate/hydroxide eluent B	Sodium carbonate	25.44 g/2 L	120 mmol/L
	Sodium hydroxide	8.0 mL/2 L	2 mmol/L
	(c = 0.25 mol/L)		

Care

Regeneration


Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the

flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.

	,				
1	Chloride	2.00	3	Sulfate	10.00
2	Bromide	10.00			

9.05

3

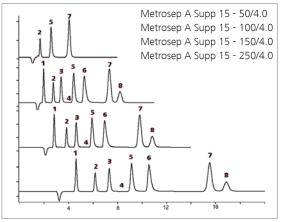
4

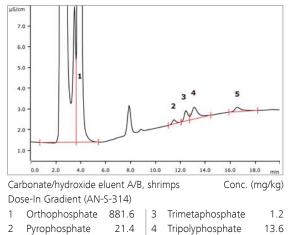
Nitrate

Sulfate

9.45

10.32


Chloride


System peak

1

2

Carbonate/hydroxide eluent, standard, 45 °C Conc. (mg/L) 1 Fluoride 2.00 | 5 Bromide 10.00

1	Fluoride	2.00	5	Bromide	10.00
2	Chloride	2.00	6	Nitrate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	System peak	-	8	Phosphate	10.00

Ordering information Metrosep A Supp 15 - 50/4.0 Metrosep A Supp 15 Guard/4.0

Metrosep A Supp 15 Guard/4.0 Metrosep A Supp 15 S-Guard/4.0 6.1030.450 6.1030.500 6.1030.510

Metrosep A Supp 15 - 100/4.0 (6.1030.410)

The Metrosep A Supp 15 - 100/4.0 is suitable for lowcapacity separation problems. It is characterized by short analysis times with outstanding resolution. The separation column is based on a surface-functionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. This column can be used to solve both standard applications and complex separation problems.

The Metrosep A Supp 15 - 100/4.0 combines fair separating efficiency with short analysis time. The robust construction and the short analysis times make this column type a popular separation column when high sample through-put is required. The determination of citrate and phosphate is performed with this column in 9 min.

Applications

- Standard anionsSimple separation problems
- Rapid analysis
- Citrate/phosphate
- Uncomplicated matrices

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary ammonium groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	15 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	31 µmol (Cl⁻)

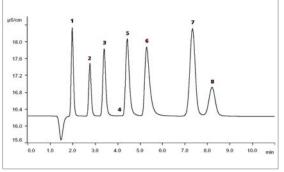
Eluent

82

Carbonate/hydroxide eluent	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
(standard eluent)	Sodium hydroxide	2.4 mL/2 L	0.3 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Carbonate/hydroxide eluent	Sodium carbonate	636 mg/2 L	3.0 mmol/L
(modified)	Sodium hydroxide	5.0 mL/2 L	25.0 mmol/L
	(c = 10 mol/L)	Column temperature 45 °C	

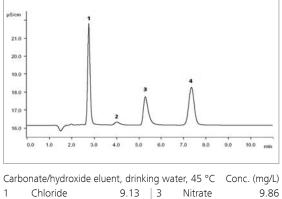
Care

Regeneration


Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

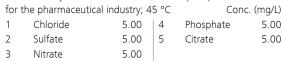
Eluent change

When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the


flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.

Carbonate/hydroxide eluent, standard, 45 °C Conc. (mg/L)

1	Fluoride	2.00	5	Bromide	10.00
2	Chloride	2.00	6	Nitrate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	System peak	-	8	Phosphate	10.00



Sulfate

4

10.33

g/L) Carbonate/hydroxide eluent mod.; citrate/phosphate

Ordering information Metrosep A Supp 15 - 100/4.0 Metrosep A Supp 15 Guard/4.0 Metrosep A Supp 15 S-Guard/4.0

2

System peak

6.1030.410 6.1030.500 6.1030.510

Metrosep A Supp 15 - 150/4.0 (6.1030.420)

The Metrosep A Supp 15 - 150/4.0 is also based on a surface-functionalized polystyrene/divinylbenzene copolymer with covalently bonded functional groups. The selectivity of the anion exchanger results from this and from the surface structure. This column can be used to solve both standard applications and complex separation problems.

The 150 mm column is the standard column from the Metrosep A Supp 15 product range. It combines exceptional selectivity with a medium capacity and can therefore be used universally. With this column type, the separation of fluoride and glycolate is ensured even with short analysis times.

Applications

- Standard anions
- Drinking water analyses
- F⁻; glycolate
- Phosphate species
- Complex matrices
- Method development

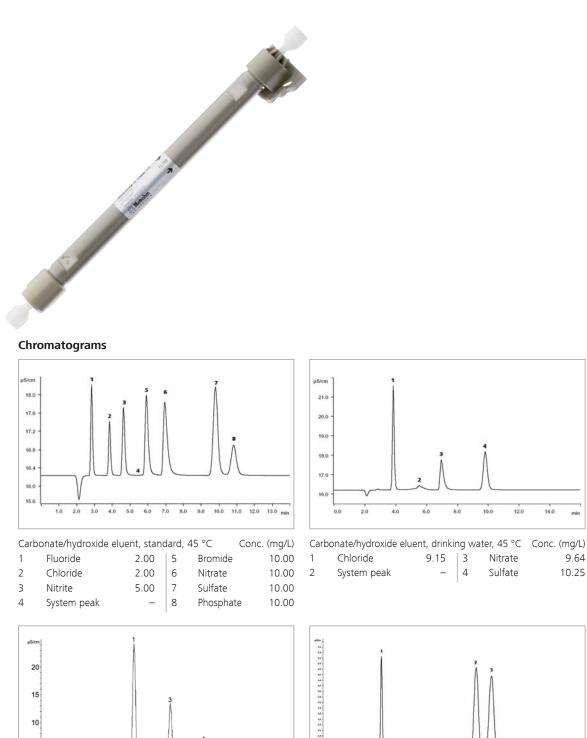
Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	15 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	48 µmol (Cl⁻)

Eluent

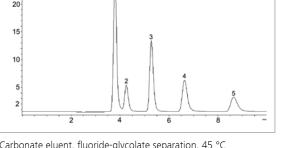
Carbonate/hydroxide eluent	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
(standard eluent)	Sodium hydroxide	2.4 mL/2 L	0.3 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Carbonate eluent	Sodium hydrogen carbonate	504 mg/2 L	3.0 mmol/L
	Sodium carbonate	742 mg/2 L	3.5 mmol/L
		Column temperature 45 °C	

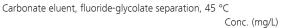
Care


Regeneration

Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

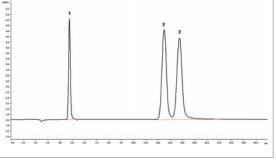
Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the


flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.

10.0

10.0


Fluoride	10.0	4
Glycolate	10.0	5

1

2

3

Nitrite Bromide 10.0

Ordering information Metrosep A Supp 15 - 150/4.0

Chloride

Metrosep A Supp 15 Guard/4.0 Metrosep A Supp 15 S-Guard/4.0 6.1030.420 6.1030.500 6.1030.510 85

Metrosep A Supp 15 - 250/4.0 (6.1030.430)

The Metrosep A Supp 15 separation columns are based on a surface-functionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. This column can be used to solve both standard applications and complex separation problems.

Besides the determination of numerous inorganic anions, the Metrosep A Supp 15 - 250/4.0 also allows for the baseline separation of glycolate, formate, and acetate. Additional application examples are nitrogen species and the determination of dicarbonic acids in addition to sulfate.

Applications

- Standard anions
- Universal applications
- Monocarbonic acids
- Dicarbonic acids in addition to SO_4^{2-}
- Nitrogen species
- Complex separation problems
- Difficult matrices

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	15 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	75 µmol (Cl⁻)

Eluent

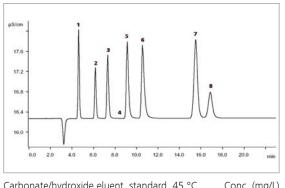
Carbonate/hydroxide eluent	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
(standard eluent)	Sodium hydroxide	2.4 mL/2 L	0.3 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Carbonate/hydroxide eluent	Sodium carbonate	1060 mg/2 L	5.0 mmol/L
(modified)	Sodium hydroxide	4.8 mL/2 L	0.6 mmol/L
	(c = 0.25 mol/L)	Column temperature 35 °C	

Care

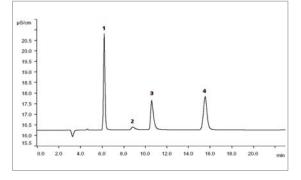
Regeneration

Rinse the column overnight (12 h) with the standard eluent at a low flow rate (0.4 mL/min).

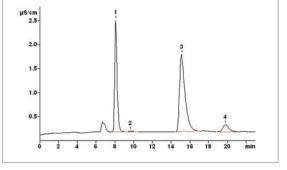
Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the

flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.


Storage

In the eluent


onate/nydroxide eiue	ent, stand	aard, 4	45 °C	Conc. (mg/L)
Fluoride	2.00	5	Bromide	10.00
Chloride	2.00	6	Nitrate	10.00
Nitrite	5.00	7	Sulfate	10.00
System peak	-	8	Phospha	te 10.00
	Fluoride Chloride Nitrite	Fluoride2.00Chloride2.00Nitrite5.00	Fluoride 2.00 5 Chloride 2.00 6 Nitrite 5.00 7	Fluoride2.005BromideChloride2.006NitrateNitrite5.007Sulfate

Town of the second seco

System peak - 4 Sulfate

Carbonate/hydroxide eluent, modified, cooling lubricant following dialysis, 35 °C Conc. (mg/L) 1

2

Chloride 3.47 3 Nitrate 11.2 4 Nitrite 0.08 Sulfate 1.07

Ordering information
Metrosep A Supp 15 - 250/4.0
Metrosep A Supp 15 Guard/4.0
Metrosep A Supp 15 S-Guard/4.0

6.1030.430 6.1030.500 6.1030.510

Metrosep A Supp 16 - 100/4.0 (6.1031.410)

The Metrosep A Supp 16 is the high-capacity version of the Metrosep A Supp 15 and is also based on a surfacefunctionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. In addition, this column type is noteworthy for its high mechanical and chemical resistance.

The column is well-suited to applications with a high ionic load but which require only relatively low resolution. Determination of bromate in water by means of the triiodide method (EPA 326, DIN EN ISO 11206) is another of the numerous applications of the Metrosep A Supp 16 - 100/4.0.

Applications

Standard anions

• Universal applications

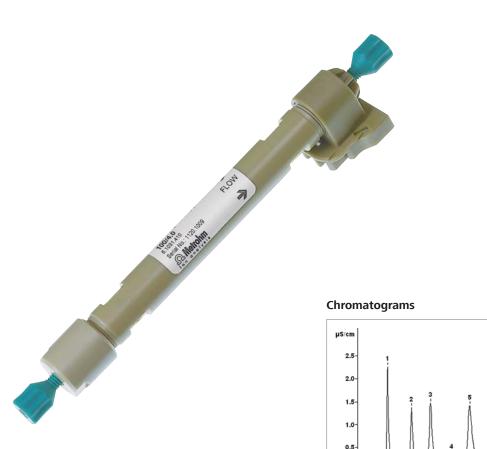
• Bromate (EPA 326, DIN EN ISO 11206)

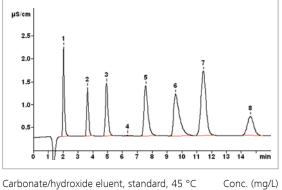
Technical information Substrate Polystyrene/divinylbenzene copolymer with quaternary ammonium groups Column dimensions 100 x 4.0 mm PEEK Column body Standard flow 0.8 mL/min Maximum flow 1.2 mL/min Maximum pressure 20 MPa Particle size 4.6 µm Organic modifier 0...10% pH range 0...14 Temperature range 10...70 °C Capacity 80 µmol (Cl⁻)

Eluent

Carbonate/hydroxide eluent	Sodium carbonate	1590 mg/2 L	7.5 mmol/L
(standard eluent)	Sodium hydroxide	6.0 mL/2 L	0.75 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Sulfuric acid eluent	Sulfuric acid (c = 1 mol/L)	200 mL/2 L	100 mmol/L
	Ammonium heptamolybdate	19.3 mL/2 L	19.3 µmol/L
	(c = 2 mmol/L)	Column temperature 45 °C	
PCR reagent	Potassium iodide	90 g/2 L	0.27 mol/L

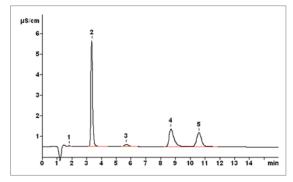
Care

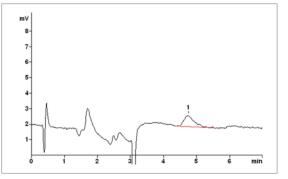

Regeneration


Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

Rinse the column with one third of the standard flow in the opposite direction for 2 h with 15 mmol/L Na_2CO_3 and then for 2 h with ultrapure water.

Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.


1	Fluoride	2.00	5	Bromide	10.00
2	Chloride	2.00	6	Nitrate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	System peak	-	8	Phosphate	10.00

Carbonate/hydroxide eluent, drinking water, 45 °C Conc. (mg/L) Fluoride 9.7 n.q. | 4 Nitrate 1 2 Chloride 9.2 5 Sulfate 10.2

_

3 System peak

Sulfuric acid eluent, triiodide method

with UV/VIS detection drinking water, 45 °C 1 Bromate 0.6 Conc. (µg/L)

Ordering information

Metrosep A Supp 16 - 100/4.0 Metrosep A Supp 16 Guard/4.0 Metrosep A Supp 16 S-Guard/4.0

6.1031.410	
6.1031.500	
6.1031.510	

Metrosep A Supp 16 - 150/4.0 (6.1031.420)

The Metrosep A Supp 16 is ideal for high-capacity separation problems and excels in its outstanding resolution. The Metrosep A Supp 16 - 150/4.0 is based on a surfacefunctionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently.

The Metrosep A Supp 16 - 150/4.0 is characterized by outstanding resolution and solves the most difficult separation problems. The column is well-suited to applications with a high ionic load but which do not require the highest resolution. It is one of the standard columns in anion chromatography.

Applications

- Standard anions
- Universal applications
- Azide/nitrate separation
- Matrices with high ionic strength
- Applications with gradient

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	1.2 mL/min
Maximum pressure	20 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	125 µmol (Cl⁻)

Eluent

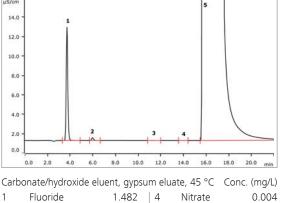
Carbonate/hydroxide eluent Sodium carbonate (standard eluent)

Sodium hydroxide (c = 0.25 mol/L)

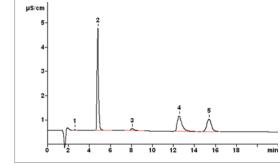
7.5 mmol/L 1590 mg/2 L 6.0 mL/2 L 0.75 mmol/L Column temperature 45 °C

Care

Regeneration


Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

Rinse the column with one third of the standard flow in the opposite direction for 2 h with 15 mmol/L Na₂CO₃ and then for 2 h with ultrapure water.


Eluent change

When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.

1Fluoride1.4824Nitrate2Chloride0.1325Sulfate3Bromide0.015

Carbonate/hydroxide eluent, drinking water, 45 °C					Conc. (mg/L)
1	Fluoride	n.q.	4	Nitrate	9.7
2	Chloride	9.2	5	Sulfate	10.2
3	System peak	-			

μS/cm 3.5 3.0 2.5

> 2.0-1.5-1.0-0.5-

1

2

3

4

Metrosep A Supp 16 - 150/4.0 Metrosep A Supp 16 Guard/4.0 Metrosep A Supp 16 S-Guard/4.0

10 12

2.00 5

7

- 8

2.00 6

5.00

14 16 18

Bromide

Nitrate

Sulfate

Phosphate

min

10.00

10.00

10.00

10.00

Conc. (mg/L)

6 8

Carbonate/hydroxide eluent, standard, 45 °C

4

Fluoride

Chloride

System peak

Nitrite

6.1031.420 6.1031.500 6.1031.510

n.q.

91

Metrosep A Supp 16 - 250/4.0 (6.1031.430)

The Metrosep A Supp 16 is ideal for high-capacity separation problems and distinguishes itself with its outstanding resolution, even in complex separation problems. The Metrosep A Supp 16 separation column is the «big brother» of the Metrosep A Supp 15 and is also based on a surface-functionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently. This and the surface structure of the anion exchanger results in unique selectivity. The high-capacity Metrosep A Supp 16 is used for solving complex problems.

The Metrosep A Supp 16 - 250/4.0 is characterized by outstanding resolution and solves the most difficult separation problems. The column is very well-suited to monitoring electroplating baths. Traces of anions can be determined in concentrated acids. Utilization in food analysis for the determination of maltose derivatives is only one more of the numerous applications of the high-capacity Metrosep A Supp 16 - 250/4.0.

Applications

- Standard anions
- Universal applications
- Oligosaccharides and polysaccharides
- Separation of organic acids
- Cl^{-} , SO_4^{2-} in electroplating baths
- Quality monitoring of high-purity chemicals (e.g. conc. acids)
- Complex separation problems
- Difficult matrices

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary ammonium groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	1.2 mL/min
Maximum pressure	20 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	195 µmol (Cl⁻)

Eluent

Carbonate/hydroxide eluent		1590 mg/2 L	7.5 mmol/L
(standard eluent)	Sodium hydroxide	6.0 mL/2 L	0.75 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Hydroxide eluent	Sodium hydroxide	4.0 mL/2 L	20 mmol/L
	(c = 10 mol/L)	Column temperature 32 °C	
Carbonate eluent	Sodium hydrogen carbonate	420 mg/2 L	2.5 mmol/L
	Sodium carbonate	1166 mg/2 L	5.5 mmol/L
		Column temperature 45 °C	

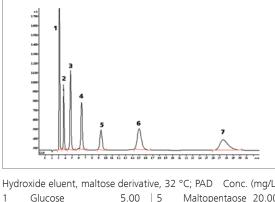
Care

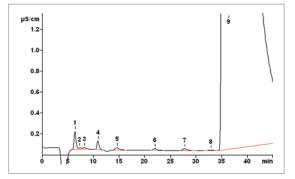
Regeneration

Rinse the column overnight (12 h) with standard eluent at a low flow rate (0.4 mL/min).

Rinse the column with one third of the standard flow in the opposite direction for 2 h with 15 mmol/L Na_2CO_3 and then for 2 h with ultrapure water.

Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.4 mL/min to match standard conditions within one hour while maintaining the direction of flow.


93

Carbonate/hydroxide eluent, standard, 45 °C					Conc. (mg/L)
1	Fluoride	2.00	5	Nitrate	10.00
2	Chloride	2.00	6	Sulfate	10.00
3	Nitrite	5.00	7	Phospha	te 10.00
4	Bromide	10.00			
			1		

Hydroxide eluent, maltose derivative, 32 °C; PAD Conc. (mg/L) Glucose 5.00 Maltopentaose 20.00 | 5 2 Maltose 5.00 6 Maltohexaose 30.00 3 Maltotriose 10.00 7 Maltoheptaose 40.00 4 Maltotetraose 10.00

Carbonate eluent, diluted sulfuric acid

afte	er neutralization			Con	c. (mg/L)
1	Fluoride	0.50	6	Bromide	0.50
2	Formate	n.q.	7	Nitrate	0.50
3	Acetate	n.q.	8	Phosphate	0.50
4	Chloride	0.50	9	Sulfate	n.q.
5	Nitrite	0.50			

Ordering information	
Metrosep A Supp 16 - 250/4.0	6.1031.430
Metrosep A Supp 16 Guard/4.0	6.1031.500
Metrosep A Supp 16 S-Guard/4.0	6.1031.510

Separation columns

Microbore IC anion-separation columns for lower eluent consumption and greater sensitivity

Metrosep A Supp 5 - 150/2.0 (6.1006.220)

The Metrosep A Supp 5 - 150/2.0 in the microbore version is distinguished for its excellent separation properties. The particle size of 5 μ m makes a decisive contribution to the separating efficiency of this column. The Metrosep A Supp 5 - 150/2.0 offers the optimum combination of selectivity and capacity, with which even complex separation tasks can be solved within a short time. The 2 mm Metrosep A Supp 5 separation columns are packed with the same material as the corresponding 4 mm separation columns. The 150 mm version of this column type is used for universal applications at low eluent consumption.

With its low eluent flow, this column is particularly suitable for IC/MS coupling.

Applications

- Standard anions
- F⁻, Cl⁻, Br⁻, l⁻
- CIO₂, CIO₃, CIO₄, BrO₃
- Cr (VI) (CrO₄²⁻)
- Method development
- Difficult matrices
- Complex separation problems
- IC-MS coupling

Technical information

Substrate	Polyvinyl alcohol with
	quarternary ammonium
	groups
Column dimensions	150 x 2.0 mm
Column body	PEEK
Standard flow	0.18 mL/min
Maximum flow	0.21 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	12 µmol (Cl⁻)
168 mg/2 L	1.0 mmol/L
678 mg/2 L	3.2 mmol/L

Eluent

Carbonate eluent (standard eluent)

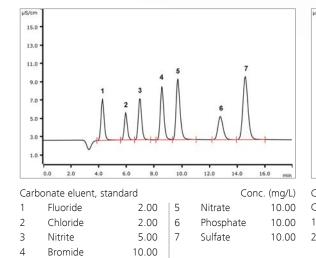
Sodium bicarbonate Sodium carbonate

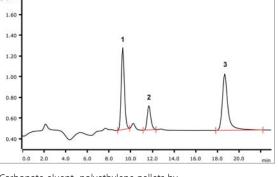
Care

Regeneration

Contamination with low-valence hydrophilic ions

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)


Contamination with high-valence hydrophobic ions or organic contaminations


- 1. Rinse with eluent (100 min at 0.1 mL/min)
- 2. Rinse with 5% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with 100% acetonitrile (60 min at 0.1 mL/min)
- 4. Rinse with 50% acetonitrile (10 min at 0.1 mL/min)
- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

Shifted system peak

- 1. Regeneration method with column oven
- 2. Rinse with concentrated eluent of 1 mol/L Na_2CO_3 (25 min at 0.1 mL/min)
- 3. Maintain for 10...12 hours at 45...50 °C (without rinsing)
- 4. Rinse with the normal eluent (at least 40 min at 0.1 mL/min)

Chromatogran	าร
Cinomatogran	13

Carbonate eluent, polyethylene pellets by						
Con	nbustion IC (CIC)			Con	ic. (mg/kg)	
1	Chloride	94.2	3	Sulfate	74.7	
2	Bromide	84.0				

Ordering information

Metrosep A Supp 5 - 150/2.0 Metrosep A Supp 5 Guard/2.0 Metrosep A Supp 5 S-Guard/2.0 6.1006.220 6.1006.600 6.1006.610

Metrosep A Supp 5 - 250/2.0 (6.1006.230)

The Metrosep A Supp 5 - 250/2.0 is the microbore highperformance separation column with which even complex separation problems can be solved easily and reproducibly. The range of applications possible with this column far exceeds the detection of standard anions. The Metrosep A Supp 5 - 250/2.0 is used wherever maximum separating efficiency must be combined with both the lowest of detection limits and low eluent consumption.

With its low eluent flow, this column is particularly suitable for IC/MS coupling.

Applications

- Standard anions
- F^{*}, Cl^{*}, Br^{*}, l^{*}
- ClO₂⁻, ClO₃⁻, ClO₄⁻, BrO₃⁻
- ClO₄⁻ at high ionic strength
- BrO₃⁻ at high ionic strength
- Cr (VI) (CrO₄²⁻)
- Method development
- Universal applications
- Difficult matrices
- Complex separation problems
- Applications with gradient
- IC-MS coupling

Technical information

		Substrate	Polyvinyl alcohol with quarternary ammonium groups
		Column dimensions Column body Standard flow Maximum flow	250 x 2.0 mm PEEK 0.18 mL/min 0.21 mL/min
		Maximum pressure Particle size Organic modifier pH range	20 MPa 5 μm 0100% (particularly acetone, acetonitrile, methanol) 312
		Temperature range Capacity	2060 °C 21 µmol (Cl⁻)
ate eluent rd eluent)	Sodium bicarbonate Sodium carbonate	168 mg/2 L 678 mg/2 L	1.0 mmol/L 3.2 mmol/L

Eluent

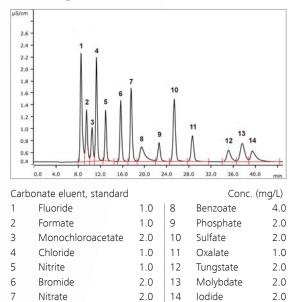
Carbonat (standard

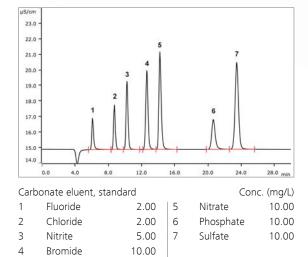
Care

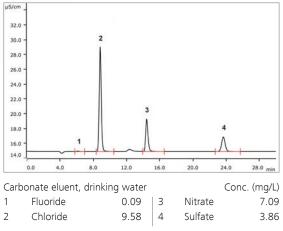
Regeneration

Contamination with low-valence hydrophilic ions

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)


Contamination with high-valence hydrophobic ions or organic contaminations


- 1. Rinse with eluent (100 min at 0.1 mL/min)
- 2. Rinse with 5% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with 100% acetonitrile (60 min at 0.1 mL/min)
- 4. Rinse with 50% acetonitrile (10 min at 0.1 mL/min)


- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

Shifted system peak

- 1. Regeneration method with column oven
- 2. Rinse with concentrated eluent of 1 mol/L $\rm Na_{2}CO_{3}$ (25 min at 0.1 mL/min)
- 3. Maintain for 10...12 hours at 45...50 °C (without rinsing)
- 4. Rinse with the normal eluent (at least 40 min at 0.1 mL/min)

Ordering information

Metrosep A Supp 5 - 250/2.0 Metrosep A Supp 5 Guard/2.0 Metrosep A Supp 5 S-Guard/2.0 6.1006.230 6.1006.600 6.1006.610 99

Metrosep A Supp 7 - 150/2.0 (6.1006.640)

The Metrosep A Supp 7 - 150/2.0 is the shorter of the two A Supp 7 columns in the microbore version. It allows similarly complex separation tasks to be solved the same way as with the corresponding 250 mm version, with no significant loss in separating efficiency.

With the Metrosep A Supp 7 - 150/2.0, these ions are determined with certainty and precision down to the lower μ g/L range. High detection sensitivity is achieved by using the 5 μ m polyvinyl alcohol polymer, which allows extremely high plate numbers and therefore outstanding separation and detection properties can be achieved. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

This microbore column is particularly suitable for use with an MS detector.

Applications

- Standard anions
- Fast analysis (high flow rate)
- Applications with gradient
- IC-MS

Technical information

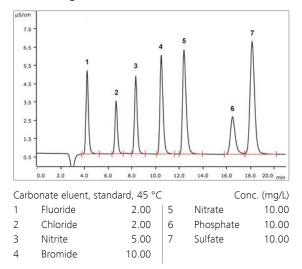
Substrate	Polyvinyl alcohol with quarternary ammonium
	groups
Column dimensions	150 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	0.6 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile and
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	18 µmol (Cl⁻)

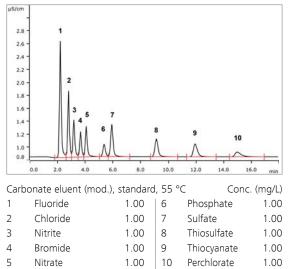
Eluent

Carbonate eluent	Sodium carbonate	763 mg/2 L	3.6 mmol/L
(standard eluent)	(column temperature: 45 °C)		
Carbonate eluent	Sodium carbonate	878 mg/2 L	4.0 mmol/L
(modified)	(column temperature: 55 °C)		

Care

Regeneration procedure for contamination with low-valency hydrophilic ions:


- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)


Regeneration procedure for contamination with highvalency hydrophobic ions and organic contaminations:

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 100% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

Storage In the eluent at maximum +8 °C.

Ordering information

Metrosep A Supp 7 - 150/2.0 Metrosep A Supp 5 Guard/2.0 Metrosep A Supp 5 S-Guard/2.0 Metrosep A Supp 16 Guard/2.0 Metrosep A Supp 16 S-Guard/2.0 6.1006.640 6.1006.600 6.1006.610 6.1031.600 6.1031.610 101

Metrosep A Supp 7 - 250/2.0 (6.1006.650)

Disinfection byproducts from water treatment are suspected not only of being health hazards but also of being carcinogenic. Oxyhalides have therefore become the subject of many investigations and standards (e.g., EPA 300.1 Part B, EPA 317.0, EPA 326.0). Of primary concern is bromate, which forms from bromide during the ozonization of drinking water.

The microbore version of the Metrosep A Supp 7 - 250/4.0 is a high-performance separation column for the parallel determination of standard anions, oxyhalides and dichloro-acetic acid. With this column, these ions are determined with certainty and precision down to the lower μ g/L range. High detection sensitivity is achieved by using the 5 μ m polyvinyl alcohol polymer, which allows extremely high plate numbers and therefore outstanding separation and detection properties can be achieved. In addition, the separation can be adapted to the specific requirements of the application by modifying the temperature.

This microbore column is particularly suitable for use with an MS detector.

Applications

- Standard anions
- EPA 300.1 Part B, simultaneous determination of standard anions and ClO₂⁻, ClO₃⁻, BrO₃⁻ and DCA (dichloroacetic acid)
- Isocratic separation of glycolate, acetate and formate
- Complex separation tasks
- Applications with gradient
- IC-MS

Technical information

Substrate	Polyvinyl alcohol with
	quarternary ammonium
	groups
Column dimensions	250 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	0.4 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile and
	methanol)
pH range	312
Temperature range	2060 °C
Capacity	27 µmol (Cl⁻)

Eluent

Carbonate eluent (standard eluent)

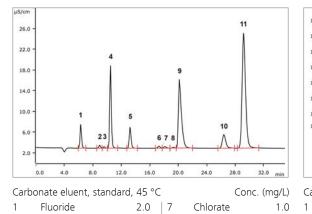
Sodium carbonate (column temperature: 45 °C) 763 mg/2 L

3.6 mmol/L

Care

Regeneration procedure for contamination with low-valency hydrophilic ions:

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with eluent (100 min at 0.1 mL/min)


Regeneration procedure for contamination with highvalency hydrophobic ions and organic contaminations:

- 1. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 2. Rinse with 100% acetonitrile (20 min at 0.1 mL/min)
- 3. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 4. Rinse with 10x concentrated eluent (100 min at 0.1 mL/min)
- 5. Rinse with ultrapure water (25 min at 0.1 mL/min)
- 6. Rinse with eluent (100 min at 0.1 mL/min)

Storage

In the eluent at maximum +8 °C.

1.0 8

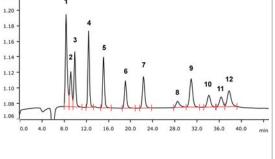
1.0 9

10.0

5.0

1.0

10


11

Dichloroacetate

Nitrate

Sulfate

Phosphate

(mg/L)	Car	bonate eluent, st	andard, 45 °C		Cor	nc. (mg/L)
1.0	1	Fluoride	0.1	7	Nitrate	0.1
1.0	2	Acetate	0.1	8	Phosphate	0.1
30.0	3	Fromate	0.1	9	Sulfate	0.1
15.0	4	Chloride	0.1	10	Malonate	0.1
40.0	5	Nitrite	0.1	11	Succinate	0.1
	6	Bromide	0.1	12	Oxalate	0.1

Ordering information

Chlorite

Bromate

Chloride

Nitrite

Bromide

2

3

4

5

6

Metrosep A Supp 7 - 250/2.0 Metrosep A Supp 5 Guard/2.0 Metrosep A Supp 5 S-Guard/2.0 Metrosep A Supp 16 Guard/2.0 Metrosep A Supp 16 S-Guard/2.0 6.1006.650 6.1006.600 6.1006.610 6.1031.600 6.1031.610

Metrosep A Supp 10 - 50/2.0 (6.1020.250)

104

The Metrosep A Supp 10 - 50/2.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 µm. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. The short length and associated relatively low overall capacity of this 50 mm column enable very rapid separations of standard anions.

The Metrosep A Supp 10 - 50/2.0 is well-suited to simple separation problems and uncomplicated matrices. Thanks to its low flow, this microbore separation column is ideal for IC-MS applications.

Applications

- Standard anions
- Simple separation problemsUncomplicated matrices
- Short analysis times
- IC-MS coupling

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	50 x 2.0 mm
Column body	PEEK
Standard flow	0.25 mL/min
Maximum flow	1.3 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	4.6 µmol (Cl⁻)

Eluent

Carbonate eluent (standard eluent) Sodium hydrogen carbonate840 mg/2 LSodium carbonate1060 mg/2

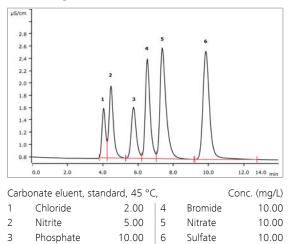
 840 mg/2 L
 5.0 m

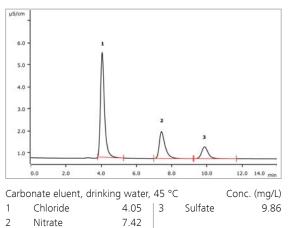
 1060 mg/2 L
 5.0 m

 Column temperature 45 °C
 5.0 m

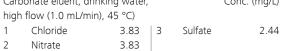
5.0 mmol/L 5.0 mmol/L

Care


Regeneration


Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h.

Organic contaminants:


Rinse with 70% methanol at 0.12 mL/min for 12 h. The addition of 1% acetic acid may be useful.

µS/cm 2.40 2.30 2.20 2.10 2.00 1.90 1.80 1.70 1.60 0.4 0.8 1.2 1.6 2.0 0.0 2.4 2.8 3.2 3.6 min Carbonate eluent, drinking water, Conc. (mg/L)

6.1020.250 6.1020.600 6.1020.610

Ordering information Metrosep A Supp 10 - 50/2.0 Metrosep A Supp 10 Guard/2.0 Metrosep A Supp 10 S-Guard/2.0

105

Metrosep A Supp 10 - 75/2.0 (6.1020.270)

106

The Metrosep A Supp 10 - 75/2.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 μ m. This proven column concept optimized by Metrohm is characterized by its robust construction, great selectivity and outstanding separating efficiency. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The capacity of the Metrosep A Supp 10 - 75/2.0 has been optimized with respect to two aspects: matrix and speed. A rapid baseline separation of the standard anions can also be achieved in samples of high ionic strength. Particularly suitable for IC-MS applications.

Applications

- Standard anions
- IC-MS coupling
- Separation of sulfite and sulfate
- Fermentation samples

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	75 x 2.0 mm
Column body	PEEK
Standard flow	0.25 mL/min
Maximum flow	1.1 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	6.9 µmol (Cl⁻)

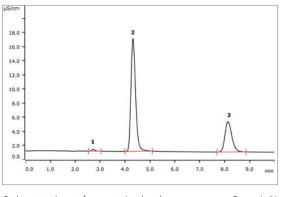
Eluent

Carbonate eluent (standard eluent) Sodium hydrogen carbonate840 mg/2 LSodium carbonate1060 mg/2

840 mg/2 L 1060 mg/2 L Column temperature 45 °C

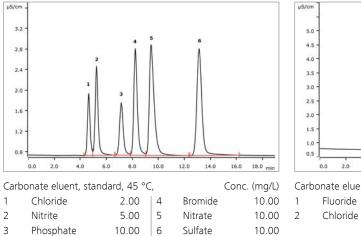
5.0 mmol/L 5.0 mmol/L

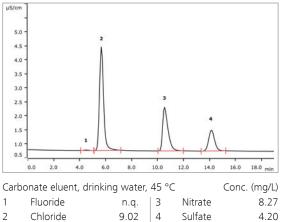
Care


Regeneration

Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h.

Organic contaminants: Rinse with 70% methanol at 0.12 mL/min for 12 h. The addition of 1% acetic acid may be useful.





Carbonate eluent, fermentation broth Conc. (g/L) Dilution 1 : 100, 45 °C 1 Chloride 0.025 | 3 Phosphate 1.249

Chloride 0.025 Nitrite 6.461

2

Ordering information	
Metrosep A Supp 10 - 75/2.0	6.1020.270
Metrosep A Supp 10 Guard/2.0	6.1020.600
Metrosep A Supp 10 S-Guard/2.0	6.1020.610

107

Metrosep A Supp 10 - 100/2.0 (6.1020.210)

The Metrosep A Supp 10 - 100/2.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 µm. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns.

The Metrosep A Supp 10 - 100/2.0 is the microbore column of choice for routine applications. Thanks to the high flow and pressure stability of this separation column, very rapid chromatograms with good separation of the ions can be achieved. The standard anions can thus be separated within less than three minutes. Particularly suitable for IC-MS applications.

Applications

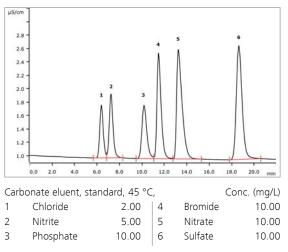
- Standard anions
- Simple separation problems
- Traces of cyanide and sulfide with PAD
- Uncomplicated matrices
- IC-MS coupling

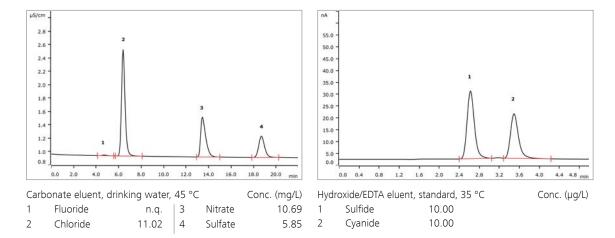
Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	100 x 2.0 mm
Column body	PEEK
Standard flow	0.25 mL/min
Maximum flow	0.9 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	8.7 µmol (Cl⁻)

Eluent

Carbonate eluent (standard eluent)	Sodium hydrogen carbonate Sodium carbonate	840 mg/2 L 1060 mg/2 L Column temperature 45 °C	5.0 mmol/L 5.0 mmol/L
Hydroxide/EDTA eluent	Sodium hydroxide (c = 20 mol/L)	10 mL/2 L	100 mmol/L
	EDTA	2.0 mg/2 L Column temperature 35 °C	0.007 mmol/L


Care


Regeneration

Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h.

Organic contaminants: Rinse with 70% methanol at 0.12 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Ordering information

Metrosep A Supp 10 - 100/2.0 Metrosep A Supp 10 Guard/2.0 Metrosep A Supp 10 S-Guard/2.0 6.1020.210 6.1020.600 6.1020.610

Metrosep A Supp 10 - 150/2.0 (6.1020.220)

110

The Metrosep A Supp 10 - 150/2.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 μ m. This proven column concept optimized by Metrohm is characterized by its robust construction, great selectivity and outstanding separating efficiency. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The Metrosep A Supp 10 - 150/2.0 separation column is suitable for complex separation tasks with wide differences in concentrations. The microbore version exhibits low eluent consumption and is therefore particularly suitable for IC-MS applications.

Applications

- Standard anions
- Universal applications
- Different matrices
- Transition metal complexes
- Chromium(VI) in toys (EU directive 2009/48/EC)
- IC-MS coupling

Technical information

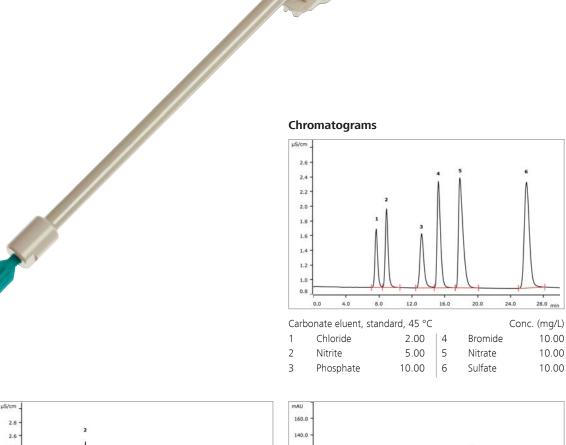
Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	150 x 2.0 mm
Column body	PEEK
Standard flow	0.25 mL/min
Maximum flow	0.7 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	15 µmol (Cl⁻)

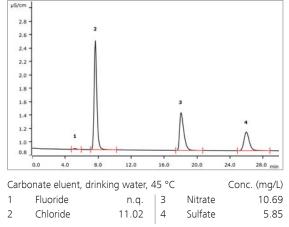
Eluent

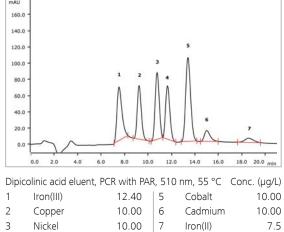
Carbonate eluent (standard eluent)	Sodium hydrogen carbonate Sodium carbonate	840 mg/2 L 1060 mg/2 L Column temperature 45 °C	5.0 mmol/L 5.0 mmol/L
Dipicolinic acid eluent	Dipicolinic acid Sodium sulfate Sodium hydroxide (c = 20 mol/L) Formic acid	1.0 g/2 L 1.42 g/2 L 6.6 mL/2 L	3.0 mmol/L 10 mmol/L 66 mmol/L pH = 4.33

Care

Regeneration


Column purification:


Rinse with 50 mL of a 0.05 mol/L solution of Na_4EDTA at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h.


Organic contaminants:

Rinse with 70% methanol at 0.12 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Storage In the eluent

10.00

Zinc

4

Ordering information Metrosep A Supp 10 - 150/2.0

Metrosep A Supp 10 Guard/2.0 Metrosep A Supp 10 S-Guard/2.0 6.1020.220 6.1020.600 6.1020.610

Metrosep A Supp 10 - 250/2.0 (6.1020.230)

The Metrosep A Supp 10 - 250/2.0 separation column is based on a high-capacity polystyrene/divinylbenzene copolymer with a particle size of only 4.6 µm. This proven column concept optimized by Metrohm is characterized by its robust construction, great selectivity and outstanding separating efficiency. The 2 mm Metrosep A Supp 10 separation columns are packed with the same material as the corresponding 4 mm separation columns. Temperature, flow and eluent composition can be used to modify the properties of the column to accommodate the current application directly.

The Metrosep A Supp 10 - 250/2.0 has a very high capacity for a microbore column. It is suitable for samples with high ionic strength, for complex separation tasks and for analyses in which great differences in concentration between the individual components are present. Thanks to its low flow, this microbore separation column is ideal for IC-MS applications.

Applications

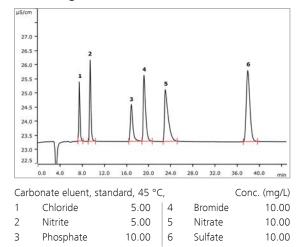
- Standard anions
- Complex separation problems
- Difficult matrices
- Anions in concentrated acids
- Aggressive matrices
- IC-MS coupling

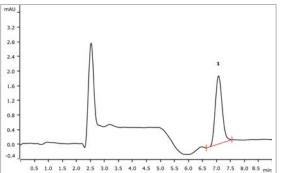
Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	250 x 2.0 mm
Column body	PEEK
Standard flow	0.25 mL/min
Maximum flow	0.7 mL/min
Maximum pressure	25 MPa
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Temperature range	1070 °C
Capacity	24 µmol (Cl⁻)

Eluent

Carbonate eluent (standard eluent)	Sodium hydrogen carbonate Sodium carbonate	840 mg/2 L 1060 mg/2 L Column temperature 45 °C	5.0 mmol/L 5.0 mmol/L
Ammonium sulfate eluent	Ammonium sulfate Ammonium hydroxide (c = 5.0 mol/L)	66.0 g/2 L 40 mL/2 L	250 mmol/L 100 mmol/L


Care


Regeneration Column purification: Rinse with 50 mL of a 0.05 mol/L solution of Na₄EDTA at a flow rate of 0.12 mL/min. Then rinse with 0.1 mol/L NaOH at 0.12 mL/min for 1 h. Organic contaminants:

Rinse with 70% methanol at 0.12 mL/min for 12 h. The addition of 1% acetic acid may be useful.

Storage In the eluent

Ammonium sulfate eluent, PCR with 1,5-diphenylcarbazide 530 nm, spiked drinking water, 50 °C Conc. (µg/L) 1 Chromate 0.2

Ordering information

Metrosep A Supp 10 - 250/2.0 Metrosep A Supp 10 Guard/2.0 Metrosep A Supp 10 S-Guard/2.0 6.1020.230 6.1020.600 6.1020.610

Metrosep A Supp 15 - 250/2.0 (6.1030.230)

114

The Metrosep A Supp 15 - 250/2.0 separation column is based on a surface-functionalized polystyrene/divinylbenzene copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. Lower flows are applied due to the smaller inner diameter of this column type. Eluent consumption is reduced drastically as a result. The dwell time of the ions in the detector becomes longer and the sensitivity or the peak area is increased accordingly (with the same sample amount). Microbore separation columns are used with the MSM-LC (6.2844.000). The Metrosep A Supp 15 - 250/2.0 is packed with the same material as the corresponding A Supp 15 - 250/4.0.

The Metrosep A Supp 15 - 250/2.0 is the right column for sophisticated applications. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Standard anions
- Drinking water analyses
- Fluoride; glycolate
- Phosphate species • Complex matrices
- Method development
- IC-MS coupling

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	250 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	0.3 mL/min
Maximum pressure	16 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	20 µmol (Cl ⁻)

Eluent

Carbonate/hydroxide eluent Sodium carbonate (standard eluent)

Sodium hydroxide (c = 0.25 mol/L)

5.0 mmol/L 1060 mg/2 L 0.3 mmol/L 2.4 mL/2 L Column temperature 45 °C

Care

Regeneration

Rinse the column overnight (12 h) with standard eluent at low flow rate (0.1 mL/min).

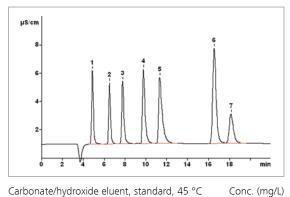
Minor to medium contamination

Rinse in the opposite direction with 15 mmol/L NaHCO₃ for approximately 2 h and then with ultrapure water for 1 h.

Eluent change

When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min to match standard conditions within one hour while maintaining the direction of flow.

Storage In the eluent



10.00

10.00

10.00

Chromatograms

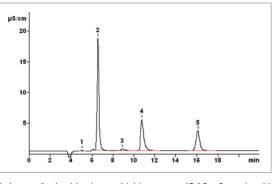
6

7

Sulfate

Phosphate

Carbonate/hydroxide eluent, standard, 45 °C Co 1 Fluoride 2.00 | 5 Nitrate


5.00

10.00

- 1
 Fluoride
 2.00

 2
 Chloride
 2.00
- 3 Nitrite

4 Bromide

Carbonate/hydroxide eluent, drinking water, 45 °C				Conc. (mg/L)	
1	Fluoride	n.q.	4	Nitrate	9.77
2	Chloride	9.00	5	Sulfate	10.40
3	System peak	-			

Ordering information

Metrosep A Supp 15 - 250/2.0 Metrosep A Supp 15 Guard/2.0 Metrosep A Supp 15 S-Guard/2.0 6.1030.230 6.1030.600 6.1030.610

Metrosep A Supp 16 - 100/2.0 (6.1031.210)

116

In the case of the microbore version of the Metrosep A Supp 16 - 100, lower flows are applied through the smaller inner diameter. Eluent consumption is reduced drastically as a result. The dwell time of the ions in the detector becomes longer and the sensitivity or the peak area is increased accordingly (with the same sample amount). Microbore separation columns are used together with the MSM-LC (6.2844.000). The 2 mm Metrosep A Supp 16 separation columns are packed with the same material as the corresponding 4 mm separation columns. The short version of this column type enables extremely rapid separations.

The column is well-suited to applications with a high ionic load but which require only relatively low resolution. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Standard anions
- Universal applications
- Rapid analysis (standard anions in 5 min)
- IC-MS coupling

Technical information

Polystyrene/divinylbenzene copolymer with guaternary
ammonium groups
100 x 2.0 mm
PEEK
0.2 mL/min
0.6 mL/min
16 MPa
4.6 µm
010%
014
1070 °C
22 µmol (Cl⁻)

Eluent

Carbonate/hydroxide eluent Sodium carbonate (standard eluent)

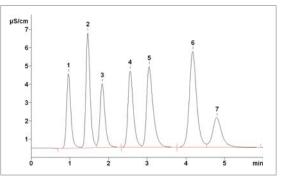
Sodium hydroxide (c = 0.25 mol/L)

7.5 mmol/L 1590 mg/2 L 6.0 mL/2 L 0.75 mmol/L Column temperature 45 °C

Care

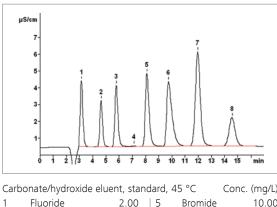
Regeneration

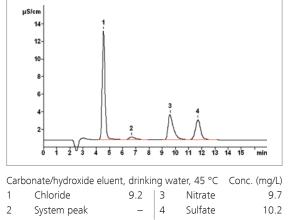
Rinse the column overnight (12 h) with standard eluent at low flow rate (0.1 mL/min).


Rinse the column with half of the standard flow in the opposite direction for 2 h with 15 mmol/L Na₂CO₃ and then for 2 h with ultrapure water.

Eluent change

When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min within one hour to match standard conditions while maintaining the direction of flow.


Storage In the eluent



Carbonate/hydroxide eluent, standard, 40 °C,

flow	rate 0.6 mL/min.			Cond	:. (mg/L)
1	Fluoride	2.00	5	Nitrate	10.0
2	Chloride	5.00	6	Sulfate	10.0
3	Nitrite	5.00	7	Phosphate	10.0
4	Bromide	10.0			

Carbonate/hydroxide eluent, standard, 45 °C Conc. (mg/L)					
1	Fluoride	2.00	5	Bromide	10.00
2	Chloride	2.00	6	Nitrate	10.00
3	Nitrite	5.00	7	Sulfate	10.00
4	System peak	-	8	Phosphate	e 10.00

Ordering information	
Metrosep A Supp 16 - 100/2.0	6.1031.210
Metrosep A Supp 16 Guard/2.0	6.1031.600
Metrosep A Supp 16 S-Guard/2.0	6.1031.610

Metrosep A Supp 16 - 150/2.0 (6.1031.220)

118

The microbore version of the Metrosep A Supp 16 - 150 is well-suited to medium-capacity separation problems. Eluent consumption is drastically reduced as a result of the smaller inner diameter of this column type and the correspondingly lower flows. As a result of the lower flows, the dwell time of the anions in the detector, and thus also the peak areas with identical sample amounts, are increased. Microbore separation columns are used together with the MSM-LC (6.2844.000). The 2 mm Metrosep A Supp 16 separation columns are packed with the same material as the corresponding 4 mm separation columns. The medium version of this column type is used for universal applications.

The column is well-suited to applications with a high ionic load but which do not require the highest resolution. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Standard anions
- Universal applications
- Difficult matrices with high ionic strength
- Applications with gradient
- IC-MS coupling

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	150 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	0.3 mL/min
Maximum pressure	16 MPa
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Temperature range	1070 °C
Capacity	31 µmol (Cl ⁻)

Eluent

Carbonate/hydroxide eluent	Sodium carbonate	1590 mg/2 L	7.5 mmol/L
(standard eluent)	Sodium hydroxide	6.0 mL/2 L	0.75 mmol/L
	(c = 0.25 mol/L)	Column temperature 45 °C	
Carbonate eluent	Sodium carbonate	763 mg/2 L	3.6 mmol/L

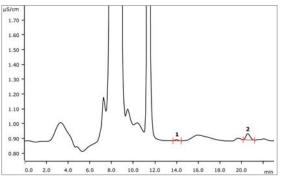
Care

Regeneration

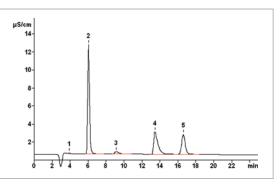
Rinse the column overnight (12 h) with standard eluent at low flow rate (0.1 mL/min).

Rinse the column with half of the standard flow in the opposite direction for 2 h with 15 mmol/L Na_2CO_3 and then for 2 h with ultrapure water.

Eluent change


When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min to match standard conditions within one hour while maintaining the direction of flow.

Storage In the eluent


Chromatograms

Carbonate eluent, salted meat, 45 °C Conc. (mg/L) 1 Nitrite 0.019 | 2 Nitrate 0.204

Carbonate/hydroxide eluent, standard, 45 °C Conc. (mg/L) Fluoride 1 2.00 5 Bromide 10.00 2 Chloride 2.00 6 Nitrate 10.00 5.00 3 Nitrite 7 Sulfate 10.00 4 System peak - 8 Phosphate 10.00

Carbonate/hydroxide eluent, drinking water, 45 °C Conc. (mg/L)					
1	Fluoride	n.q.	4	Nitrate	9.7
2	Chloride	9.2	5	Sulfate	10.2
3	System peak	-			

Ordering information

Metrosep A Supp 16 - 150/2.0 Metrosep A Supp 16 Guard/2.0 Metrosep A Supp 16 S-Guard/2.0 6.1031.220 6.1031.600 6.1031.610

Metrosep A Supp 16 - 250/2.0 (6.1031.230)

120

The microbore version of the Metrosep A Supp 16 - 250 is well suited to high-capacity separation problems. Lower flows are applied due to the smaller inner diameter of this column type. Eluent consumption is reduced drastically as a result. The dwell time of the ions in the detector becomes longer and the sensitivity or the peak area is increased accordingly (with the same sample amount). Microbore separation columns are used with the MSM-LC (6.2844.000). The 2 mm Metrosep A Supp 16 separation columns are packed with the same material as the corresponding 4 mm separation columns. The separation column is based on a surface-functionalized polystyrene/ divinylbenzene copolymer. The functional groups are bonded covalently. The morphology of the anion exchanger results in unique selectivity. The high-capacity Metrosep A Supp 16 - 250/2.0 is used for solving complex problems.

The Metrosep A Supp 16 - 250/2.0 is characterized by outstanding resolution and solves the most difficult separation problems. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Standard anions
- Universal applications
- Azide/nitrate separation
- Divalent organic acids besides standard anions
- Matrices with high ionic strength
- Applications with gradient
- IC-MS coupling

Technical information

Polystyrene/divinylbenzene
copolymer with quaternary
ammonium groups
250 x 2.0 mm
PEEK
0.2 mL/min
0.3 mL/min
16 MPa
4.6 µm
010%
014
1070 °C
51 µmol (Cl⁻)

Eluent

Carbonate/hydroxide eluent Sodium carbonate (standard eluent)

Sodium hydroxide (c = 0.25 mol/L)

1590 mg/2 L 7.5 mmol/L 6.0 mL/2 L 0.75 mmol/L Column temperature 45 °C

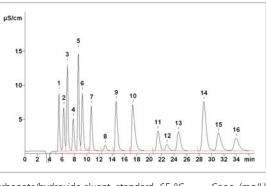
Care

Regeneration

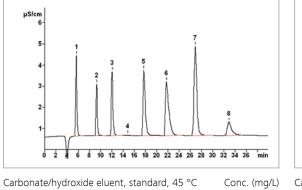
Rinse the column overnight (12 h) with standard eluent at low flow rate (0.1 mL/min).

Rinse the column with half of the standard flow in the opposite direction for 2 h with 15 mmol/L Na₂CO₃ and then for 2 h with ultrapure water.

Eluent change

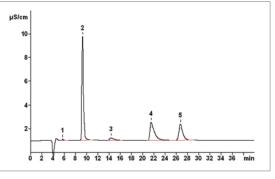

When installing or changing to eluents which have an organic modifier to avoid high backpressure, adjust the flow in small increments from 0.1 mL/min to match standard conditions within one hour while maintaining the direction of flow.

Storage In the eluent



121

Chromatograms



Carbonate/hydroxide eluent, standard, 65 °C Conc. (mg/L)					
1	Fluoride	2.0	9	Bromide	10.0
2	Glycolate	10.0	10	Nitrate	10.0
3	Formate	10.0	11	Malate	10.0
4	Lactate	10.0	12	Succinate	10.0
5	Chloride	5.0	13	Malonate	10.0
6	MSA	10.0	14	Sulfate	10.0
7	Nitrite	5.0	15	Phosphat	e 10.0
8	System peak	-	16	Maleate	10.0

 1
 Fluoride
 2.00
 5
 Bromide
 10.00
 dialog

2	Chloride	2.00	6	Nitrate	10.00	1
3	Nitrite	5.00	7	Sulfate	10.00	2
4	System peak	-	8	Phosphate	10.00	3

Carb	onate/hydroxide e	Conc. (mg/L)			
drinl	king water, 45 °C				
1	Fluoride	n.q.	4	Nitrate	9.7
2	Chloride	9.2	5	Sulfate	10.2
3	System peak	-			

Ordering information				
Metrosep A Supp 16 - 250/2.0	6.1031.230			
Metrosep A Supp 16 Guard/2.0	6.1031.600			
Metrosep A Supp 16 S-Guard/2.0	6.1031.610			

Separation columns

IC separation columns for the determination of organic acids – ion-exclusion chromatography

«Inverse suppression» - dissociation desired!

The use of the Metrohm «MSM» suppressor module is recommended to improve sensitivity in the detection of organic acids which are only weakly dissociated. A non-conventional approach is used: The suppressor is charged with lithium ions instead of hydrogen ions. As a result, it is possible to transfer the protonated and thus undissociated acids into their nearly completely dissociated salts. This increases sensitivity in the conductivity detector considerably. The construction is the same as with chemical suppression, except that the suppressor is regenerated with lithium chloride instead of with sulfuric acid. The «MSM» is used as a post-column reactor between the ion-exclusion column and the conductivity detector.

Hamilton PRP-X300 - 250/4.0 (6.1005.030)

124

The Hamilton-PRP-X300 ion-exclusion column is a cationexchanger column with low capacity. The combination of a polystyrene/divinylbenzene copolymer with sulfonic acid groups as ion exchanger is ideal for the solution of simple separation problems. The column is characterized by the possibility of determining the salts of organic acids, in particular the very sensitive determination of formate.

Applications

- Glycolic acid, monochloroacetic acid
- Simple matrices
- Simple separation problems
- Formate determination

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with
	sulfonic acid groups
Column dimensions	250 x 4.0 mm
Column body	Stainless steel
Standard flow	1.0 mL/min
Maximum flow	8.0 mL/min
Maximum pressure	34 MPa
Particle size	7 µm
Organic modifier	0100%
pH range	113
Temperature range	560 °C
Capacity	19 µmol (K⁺)

Eluents

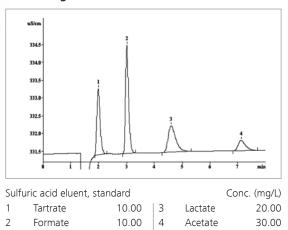
Sulfuric acid eluent

Sulfuric acid (c = 0.1 mol/L) 10 mL/2 L

0.5 mmol/L

Care

Regeneration


Divalent cations remain on the column and form complexes with citrate that falsify the citrate peak. Injection of 100 μ L 0.1 mol/L Na₂H₂EDTA.

Rinse the column with 0.01 mol/L H_2SO_4 with 20% methanol at a flow rate of 0.5 mL/min for 6 h.

Storage

For short periods (days) in the eluent, for longer periods (weeks) in methanol/water (1:4)

Ordering information				
Hamilton PRP-X300 - 250/4.0	6.1005.030			
Metrosep RP 2 Guard/3.5	6.1011.030			
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130			

Metrosep Organic Acids - 100/7.8 (6.1005.210)

126 The separation column for the determination of organic acids and weak mineral acids. The low capacity in comparison with the Metrosep Organic Acids - 250/7.8 (6.1005.200) allows the rapid separation of organic acids. This column is suitable primarily for small and medium concentrations in uncomplicated sample matrices.

Applications

- Organic acids: Citrate, tartrate, malate, ascorbate, succinate
- Short-chain fatty acids: Formate, acetate, propionate, butyrate, etc.
- F⁻, CO₃²⁻
- Simple matrices
- Simple separation problems

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with
	sulfonic acid groups
Column dimensions	100 x 7.8 mm
Column body	Stainless steel
Standard flow	0.5 mL/min
Maximum flow	0.6 mL/min
Maximum pressure	7 MPa
Particle size	9 µm
Organic modifier	020%
pH range	113
Temperature range	590 °C

Eluent

Sulfuric acid eluent	Sulfuric acid (c = 2 mol/L)	0.5 mL/2 L	0.5 mmol/L
(standard eluent)	Acetone	300 mL/2 L	15%
Oxalic acid eluent	Oxalic acid	45 mg/2 L	0.25 mmol/L

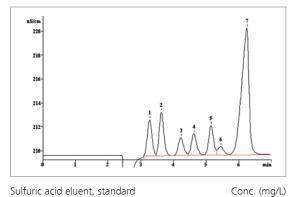
Care

Regeneration

Column purification: Rinse the column in the opposite direction with 20% acetonitrile in 0.01 mol/L H_2SO_4 at a flow rate of 0.1 mL/min for 4 hours at 65 °C.

Contaminations with metals:

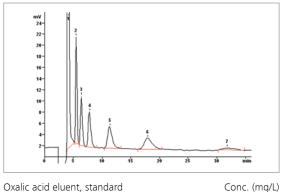
If retention times are shortened: Rinse the column in the opposite direction with approx. 30 mL 0.1 mol/L H_2SO_4 at a flow rate of 0.1 mL/min.


Organic contaminants:

Rinse the column in the opposite direction with approx. 30 mL 0.01 mol/L H_2SO_4 /acetonitrile (80/20) at a flow rate of 0.1 mL/min.

Storage

For short periods (days) in the eluent, for longer periods (weeks) in ultrapure water. The column can be stored in a refrigerator at no colder than +4 °C.



Sulfuric acid eluent, standard

Tartrate 1 2 Malate

3 Succinate

4 Lactate 25.0 5 Formate 50.0 6 Acetate 100.0 7 System peak 50.0

(
20.0	1	Acetate	10.0	5	Caproate	10.0
100.0	2	Propionate	10.0	6	Enantate	10.0
-	3	Butyrate	10.0	7	Octanate	10.0
	4	Valerate	10.0			

Ordering information

Metrosep Organic Acids - 100/7.8 Metrosep Organic Acids Guard/4.6 6.1005.210 6.1005.250

Metrosep Organic Acids - 250/7.8 (6.1005.200)

The Metrosep Organic Acids - 250/7.8 is is a polymerbased cation-exchanger column. It is the high-performance column for the determination of organic acids and for the solution of difficult and complex separation problems. In addition, carbonate (with inverse suppression), fluoride (hydrofluoric acid), and phosphate (phosphoric acid) can be determined along with organic acids. In comparison with the Hamilton PRP-X300 - 250/4.0, the Metrosep Organic Acids column - 250/7.8 has greater capacity and enhanced selectivity.

Applications

- Organic acids: Citrate, tartrate, malate, ascorbate, succinate
- Short-chain fatty acids: Formate, acetate, propionate, butyrate, etc.
- F⁻, PO₄³⁻, CO₃²⁻
- Difficult matrices
- Difficult separation problems

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with
	sulfonic acid groups
Column dimensions	250 x 7.8 mm
Column body	Stainless steel
Standard flow	0.5 mL/min
Maximum flow	0.6 mL/min
Maximum pressure	7 MPa
Particle size	9 µm
Organic modifier	020%
pH range	113
Temperature range	590 °C

Eluent

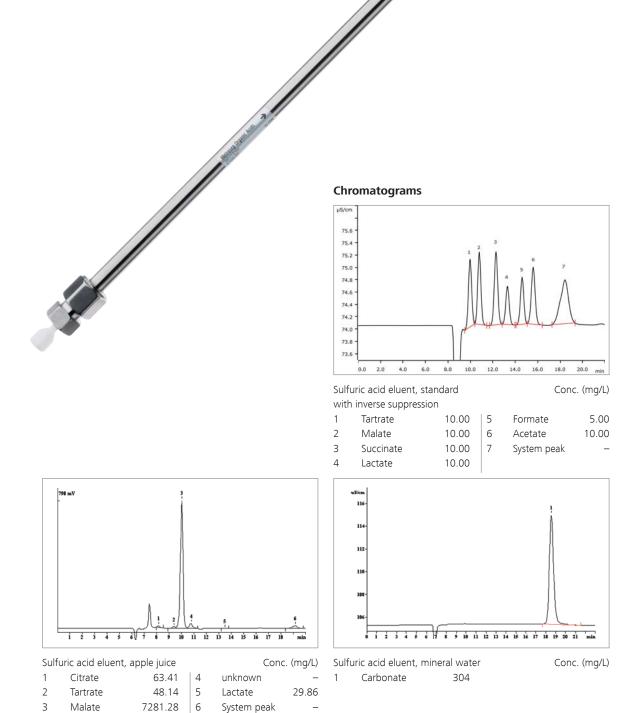
Sulfuric acid eluent (standard eluent) Sulfuric acid (c = 2 mol/L) Acetone 0.5 mL/2 L 300 mL/2 L 0.5 mmol/L 15%

Care

Regeneration

Column purification: Rinse the column in the opposite direction with 20% acetonitrile in 0.01 mol/L H_2SO_4 at a flow rate of 0.1 mL/min for 4 hours at 65 °C.

Contaminations with metals:


If retention times are shortened: Rinse the column in the opposite direction with approx. 30 mL 0.1 mol/L $\rm H_2SO_4$ at a flow rate of 0.1 mL/min.

Organic contaminants:

Rinse the column in the opposite direction with approx. 30 mL 0.01 mol/L H_2SO_4 /acetonitrile (80/20) at a flow rate of 0.1 mL/min.

Storage

For short periods (days) in the eluent, for longer periods (weeks) in ultrapure water. The column can be stored in a refrigerator at no colder than +4 $^{\circ}$ C.

Ordering information

Metrosep Organic Acids - 250/7.8 Metrosep Organic Acids Guard/4.6 6.1005.200 6.1005.250

Separation columns

IC carbohydrate-separation columns – anionexchange chromatography applying pulsed amperometric detection (PAD)

Metrosep Carb 2 - 100/4.0 (6.1090.410)

The Metrosep Carb 2 - 100/4.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion-exchange column is based on a styrene/divinylbenzene copolymer. It is stable in the range of pH = 0...14 and provides separation of glucose, fructose, sucrose and lactose. It is also suitable for the analysis of some sugar alcohols and oligosaccharides. Short analysis times can be achieved on the 100 mm version of the Metrosep Carb 2 separation column.

132

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Oligosaccharides
- Simple separation problems
- Very rapid separations

Technical information

Substrate	Styrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	0.8 mL/min
Maximum flow	1.6 mL/min
Maximum pressure	20 MPa
Particle size	5.0 µm
Organic modifier	In the eluent: 050 %
	acetonitrile or methanol
	In the sample: 0100 %
	acetone, acetonitrile or
	methanol
pH range	014
Temperature range	2060 °C

Eluent

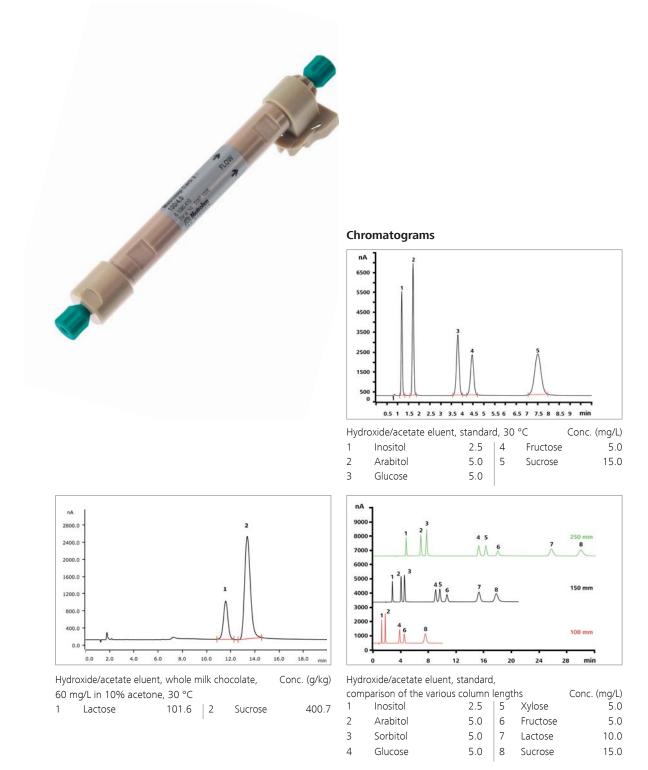
Hydroxide/acetate eluent	Sodium hydroxide (c = 20 mol/L)	10 mL/2 L	100 mmol/L
(standard eluent)	Sodium acetate	1640.7 mg/2 L	10 mmol/L

Note

- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30 °C.

Care

Organic contamination:


Rinse the column in the flow direction with standard eluent in 50% acetonitrile at a flow rate of 0.5 mL/min for 3 h.

Inorganic contamination:

Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.5 mL/min for at least 3 h.

After regeneration, rinse the column with standard eluent for at least 3 h.

Storage In the standard eluent

Ordering information
Metrosep Carb 2 - 100/4.0
Metrosep Carb 2 Guard/4.0
Metrosep Carb 2 S-Guard/4.0

6.1090.410
6.1090.500
6.1090.510

Metrosep Carb 2 - 150/4.0 (6.1090.420)

The Metrosep Carb 2 - 150/4.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The ainon-exchange column is based on a styrene/ divinylbenzene copolymer. It is stable in the range of pH = 0...14 and provides separation of monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, oligosaccharides, etc. The column capacity has been optimized to enable the combination of rapid separations and excellent separation properties.

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Anhydrosugars
- Oligosaccharides
- Rapid separations

Technical information

Substrate	Styrene/divinylbenzene copolymer with quaternary ammonium groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.5 mL/min
Maximum flow	1.2 mL/min
Maximum pressure	20 MPa
Particle size	5.0 µm
Organic modifier	In the eluent: 050 % acetonitrile or methanol In the sample: 0100 % acetone, acetonitrile or
	methanol
pH range	014
Temperature range	2060 °C

Eluent

134

Hydroxide/acetate eluent	Sodium hydroxide (c = 20 mol/L)	10 mL/2 L	100 mmol/L
(standard eluent)	Sodium acetate	1640.7 mg/2 L	10 mmol/L
Hydroxide eluent	Sodium hydroxide (c = 20 mol/L)	1.0 mL/2 L	20 mmol/L
Hydroxide/acetate eluent	Sodium hydroxide (c = 20 mol/L)	0.5 mL/2 L	5 mmol/L
(modified)	Sodium acetate	328.1 mg/2 L	2 mmol/L
Hydroxide eluent	Sodium hydroxide (c = 20 mol/L)	5.0 mL/2 L	100 mmol/L
(modified)			

Note

- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column for 2 h at 30 °C with the desired eluent.

Care

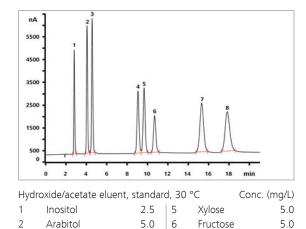
Organic contamination:

Rinse the column in the flow direction with standard eluent in 50% acetonitrile at a flow rate of 0.5 mL/min for 3 h.


Inorganic contamination:

Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.5 mL/min for at least 5 h.

After regeneration, rinse the column with standard eluent for at least 5 h.


Storage In the standard eluent

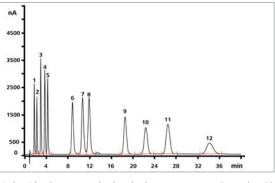
Hydroxide eluent, (modified), ASTM D 7591, Conc. (mg/kg) free and total glycerin in biodiesel

1 Free glycerin 6.52 2 Total glycerin 98.15

5.0 7

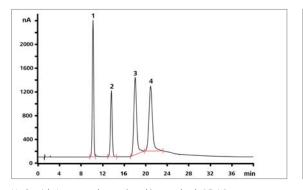
5.0 8

Lactose


Sucrose

10.0

15.0


Conc. (mg/L)

20.0

Hydroxide eluent, standard, anhydrosugars $$\rm Conc.\ (mg/L)$$ in aerosols, 45 $^{\circ}\rm C$

1	Inositol	0.6	7	Mannosan	3.2
2	Erythritol	0.6	8	Galactosan	3.2
3	Arabitol	1.3	9	Rhamnose	3.2
4	Sorbitol	1.3	10	Glucose	3.2
5	Mannitol	1.3	11	Xylose	3.2
6	Levoglucosan	3.2	12	Sucrose	3.2

Hydroxide/acetate eluent, (mod.), standard, 35 °C

5.0

5.0

1 Galactose

2

3

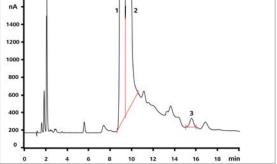
3

4

Sorbitol

Glucose

Mannose


galactosamine

N-acetylglucosamine 20.0

4 N-acetyl-

Ordering information

Metrosep Carb 2 - 150/4.0 Metrosep Carb 2 Guard/4.0 Metrosep Carb 2 S-Guard/4.0

Hydroxide/acetate eluent, (mod.), lactose-free milk, diluted 1 : 100, Inline Dialysis spiked with 100 mg/L Lactose, 28 °C

					Conc. (mg/L)
1	Galactose	n.q.	3	Lactose	100.0
2	Glucose	n.q.			

6.1090.420
6.1090.500
6.1090.510

Metrosep Carb 2 - 250/4.0 (6.1090.430)

136 Th su alk

The Metrosep Carb 2 - 250/4.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion-exchange column is based on a styrene/divinylbenzene copolymer. It is stable in the range of pH = 0...14 and provides separation of mono-saccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrosugars, amino sugars, etc. The 250 mm version of the Metrosep Carb 2 separation column is optimized for complex separations.

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Anhydrosugars
- Difficult matrices
- Complex separations

Technical information

Substrate	Styrene/divinylbenzene copolymer with quaternary ammonium groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	0.5 mL/min
Maximum flow	0.8 mL/min
Maximum pressure	20 MPa
Particle size	5.0 µm
Organic modifier	In the eluent: 050 %
	acetonitrile or methanol
	In the sample: 0100 %
	acetone, acetonitrile or
	methanol
pH range	014
Temperature range	2060 °C

Eluent

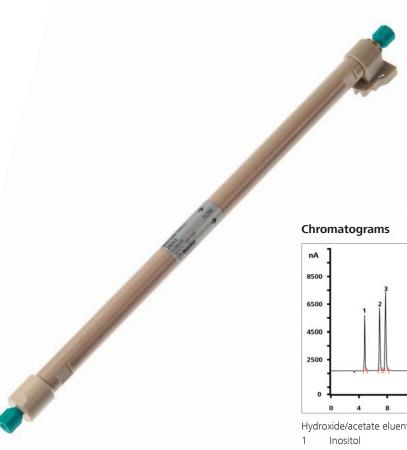
Hydroxide/acetate eluent	Sodium hydroxide (c = 20 mol/L)	10 mL/2 L	100 mmol/L		
(standard eluent) Sodium acetate		1640.7 mg/2 L	10 mmol/L		
Hydroxide/acetate eluent	Sodium hydroxide (c = 20 mol/L)	0.5 mL/2 L	5 mmol/L		
(modified)	Sodium acetate	328.1 mg/2 L	2 mmol/L		

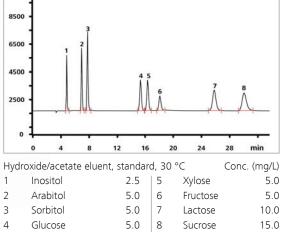
Note

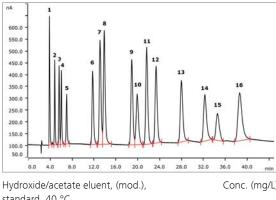
- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30 °C.

Care

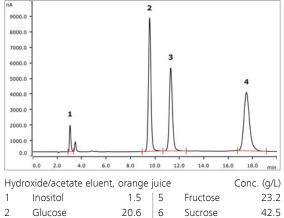
Organic contamination:


Rinse the column in the flow direction with standard eluent in 50% acetonitrile at a flow rate of 0.5 mL/min for 7 h.


Inorganic contamination:


Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.5 mL/min for at least 7 h.

After regeneration, rinse the column with standard eluent for at least 7 h.


Storage In the standard eluent

	0.0	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	min
Hydr	roxid	e/ace	etate	eluer	nt, (m	nod.),				Co	nc. (n	ng/L)
stan	dard	, 40	°C									
1	Ind	osito	l			0.5	9	Fι	lcose			2.0
2	Ху	litol				0.5	10	Su	ucros	e		2.0
3	So	rbito				0.5	11	G	alacto	ose		2.0
4	M	annit	ol			0.5	12	G	lucos	e		2.0
5	La	ctitol				0.5	13	Μ	lanno	se		2.0
6	Le	voglu	lcosa	in		2.0	14	Sc	orbos	e		5.0
7	M	anno	san			2.0	15	Fr	uctos	e		5.0
8	Ga	alacto	osan			2.0	16	La	actose	9		5.0

Ordering information

Metrosep Carb 2 - 250/4.0 Metrosep Carb 2 Guard/4.0 Metrosep Carb 2 S-Guard/4.0 6.1090.430 6.1090.500 6.1090.510

Hamilton RCX-30 - 150/4.6 (6.1018.010)

The Hamilton RCX-30 - 150/4.6 is a column for the separation of monosaccharides, disaccharides, oligosaccharides, and sugar alcohols. It is an anion-exchange column based on polystyrene/divinylbenzene resin. The RCX-30 - 150/4.6 can be used for universal applications.

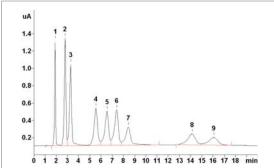
The Hamilton RCX-30 - 150/4.6 separation column features an outstanding separation of fructose and lactose. The column also offers the advantage that flows of up to 2 mL/min can be used in order to accelerate the chromatography. The column is used both for the rapid separation of small carbohydrates and for the separation of oligosaccharides.

Applications

- Monosaccharides
- Disaccharides
- Oligosaccharides
- Sugar alcohols
- Simple separation problems
- Rapid separations

Technical information

Substrate	Styrene/divinylbenzene		
	copolymer with quaternary		
	ammonium groups		
Column dimensions	150 x 4.6 mm		
Column body	PEEK		
Standard flow	1.0 mL/min		
Maximum flow	2.0 mL/min		
Maximum pressure	34 MPa		
Particle size	7 µm		
pH range	113 (T>35 °C max. pH 8)		
Temperature range	2060 °C		


Eluent

Hydroxide eluent	Sodium hydroxide (c = 20 mol/L)	15 mL/2 L	150 mmol/L
		Column temperature 32 °C	
Hydroxide eluent	Sodium hydroxide (c = 20 mol/L)	20 mL/2 L	200 mmol/L
(modified)		Column temperature 32 °C	

Care

Regeneration Rinse the column with 150 mL 0.1 mol/L NaOH at a flow rate of 1 mL/min. Storage In ultrapure water with 1 mmol/L sodium azide

5.00 10.00

10.00

10.00

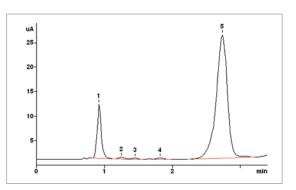
10.00

Hydroxide eluent, standard

1	Inositol	
2	Arabitol	
3	Sorbitol	
4	Fucose	

5 Arabinose

11	12	13 14	15	10	1/	18	
					С	on	C.
6		Glu	ICO:	se			
7		Fru	ctc	se			
8		Suc	ros	se			
9		Lac	tos	e			


(mg/L)

10.00

10.00

10.00

10.00

Hydroxide eluent, modified, glycerin

in fe	ermentation solu	ition		Cor	nc. (mg/L)
1	Glycerin	20.31	4	Trehalose	n.q.
2	Arabitol	n.q.	5	Glucose	n.q.
3	Sorbitol	n.q.			

Ordering information

Hamilton RCX-30 - 150/4.6 Metrosep RP 2 Guard/3.5 Replacement filters for RP 2 Guard/3.5 (10 pcs.) 6.1018.010 6.1011.030 6.1011.130

Hamilton RCX-30 - 250/4.6 (6.1018.000)

The Hamilton RCX-30 - 250/4.6 is a column for the separation of monosaccharides, disaccharides, and sugar alcohols. It is an anion-exchange column based on polystyrene/divinylbenzene resin. The RCX-30 - 250/4.6 can be used for universal applications.

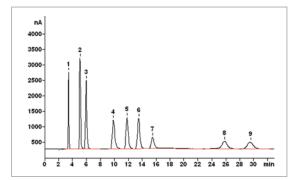
> The Hamilton RCX-30 - 250/4.6 separation column excels in an outstanding separation of fructose and lactose. The column also offers the advantage that flows of up to 2 mL/min can be used in order to accelerate the chromatography. The long version of the column (250 mm) is preferred for the determination of small carbohydrates (monosaccharides, disaccharides, and sugar alcohols).

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Difficult separation problems
- Difficult matrices

Technical information

Substrate	Styrene/divinylbenzene	
	copolymer with quaternary	
	ammonium groups	
Column dimensions	250 x 4.6 mm	
Column body	PEEK	
Standard flow	1.0 mL/min	
Maximum flow	2.0 mL/min	
Maximum pressure	34 MPa	
Particle size	7 µm	
pH range	113 (T>35 °C max. pH 8)	
Temperature range	2060 °C	


Eluent

Hydroxide eluent (standard eluent) Sodium hydroxide (c = 20 mol/L) 15 mL/2 L 150 mmol/L Column temperature 32 °C

Care

Regeneration Rinse the column with 150 mL 0.1 mol/L NaOH at a flow rate of 1 mL/min. Storage In ultrapure water with 1 mmol/L sodium azide

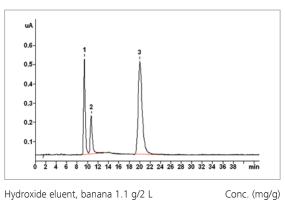
Hydroxide eluent, standard

1	Inositol
2	Arabitol
3	Sorbitol

Arabinose

Fucose

4


5

Conc. (mg/L) 5.00 6 Glucose 10.00 7 Fructose 10.00 8 Lactose 9 Sucrose

10.00

10.00

10.00

1 Glucose 15 | 3 Sucrose 71 Fructose 11 10.00 2

Ordering information

Hamilton RCX-30 - 250/4.6 Metrosep RP 2 Guard/3.5 Replacement filters for RP 2 Guard/3.5 (10 pcs.)

10.00

10.00

6.1018.000 6.1011.030 6.1011.130

Separation columns

Microbore IC carbohydrate-separation columns for lower eluent consumption and greater sensitivity

Metrosep Carb 2 - 100/2.0 (6.01090.210)

The Metrosep Carb 2 - 100/2.0 IC column is the short microbore version of the Metrosep Carb 2 columns and is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion exchanger column is based on a styrene-divinylbenzene copolymer. It is stable in the range of pH = 0...14 and provides separation of glucose, fructose and sucrose. It is also suitable for the analysis of some sugar alcohols and oligosaccharides. Short analysis times can be achieved on the 100 mm version of the Metrosep Carb 2 separation column.

With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Oligosaccharides
- Simple separation problems
- Very rapid separations
- Anions in sea water
- IC-MS

Technical information			
Substrate	Polystyrene-divinylbenzene		
	copolymer with quaternary		
	ammonium groups		
Column dimensions	100 x 2.0 mm		
Column body	PEEK		
Standard flow	0.2 mL/min		
Maximum flow	0.7 mL/min		
Maximum pressure	20 MPa		
Particle size	5.0 µm		
Organic modifier	In the eluent: 050 %		
	acetonitrile or methanol		
	In the sample: 0100 %		
	acetone, acetonitrile or		
	methanol		
pH range	014		
Temperature range	2060 °C		

Eluents

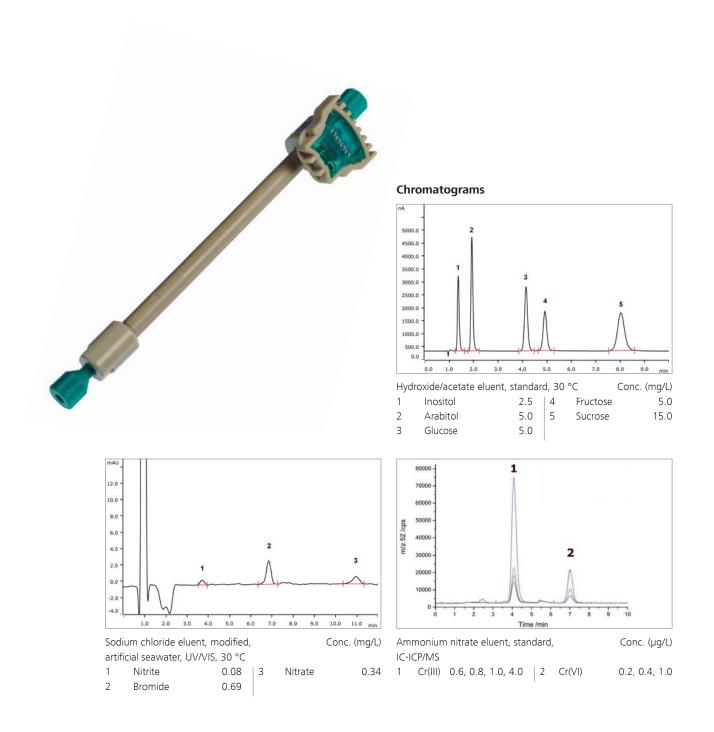
LIUCIIIIS				
Hydroxide/acetate eluent	Sodium hydroxide	10 mL/2 L	100 mmol/L	
(standard eluent)	(c = 20 mol/L)			
	Sodium acetate	1,640.7 mg/2 L	10 mmol/L	
Sodium chloride eluent	Sodium chloride	20 g/2 L	10 g/L	
Ammonium nitrate eluent	Ammonium nitrate	16.0 g/2 L	100 mmol/L	
	Ammonium hydroxide		pH = 9.0	

Care

Regeneration Note:

- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30 °C.

Organic contamination:


Rinse the column in the flow direction with 25 mL of solution (standard eluent in 50% acetonitrile) at a flow rate of 0.13 mL/min.

Inorganic contamination:

Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.13 mL/min for at least 7 h.

After regeneration, rinse the column with standard eluent for at least 7 h.

Storage In the standard eluent

Ordering information	
Metrosep Carb 2 - 100/2.0	6.01090.210
Metrosep Carb 2 Guard/2.0	6.01090.600
Metrosep Carb 2 S-Guard/2.0	6.01090.610

Metrosep Carb 2 - 150/2.0 (6.01090.220)

The microbore version of the Metrosep Carb 2 - 150/2.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The anion exchanger column is based on a styrene-divinylbenzene copolymer. It is stable in the range of pH = 0...14 and provides separation of monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, oligosaccharides, etc. The column capacity has been optimized to enable the combination of rapid separations and excellent separation properties.

Thanks to its low eluent consumption, it is particularly suitable for IC-MS coupling.

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Oligosaccharides
- Anhydrous sugars
- Rapid separations
- IC-MS

Technical information

Substrate	Polystyrene-divinylbenzene copolymer with quaternary ammonium groups
Column dimensions	150 x 2.0 mm
Column body	PEEK
Standard flow	0.13 mL/min
Maximum flow	0.45 mL/min
Maximum pressure	20 MPa
Particle size	5.0 µm
Organic modifier	In the eluent: 050 %
	acetonitrile or methanol
	In the sample: 0100 %
	acetone, acetonitrile or
	methanol
pH range	014
Temperature range	2060 °C

Eluents

LIUEIIIS			
Hydroxide/acetate eluent	Sodium hydroxide	10 mL/2 L	100 mmol/L
(standard eluent)	(c = 20 mol/L)		
	Sodium acetate	1,640.7 mg/2 L	10 mmol/L
Hydroxide/acetate eluent	Sodium hydroxide	0.5 mL/2 L	5 mmol/L
(modified)	(c = 20 mol/L)		
	Sodium acetate	328.1 mg/2 L	2 mmol/L

Care

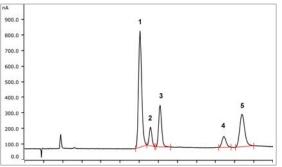
Regeneration Note:

- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30 °C.

Organic contamination:

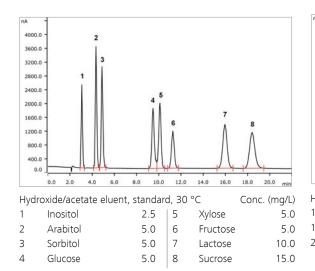
Rinse the column in the flow direction with 25 mL of solution (standard eluent in 50% acetonitrile) at a flow rate of 0.13 mL/min.

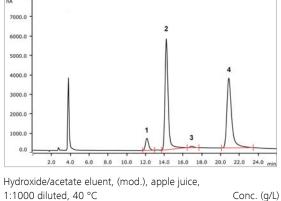
Inorganic contamination:


Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.13 mL/min for at least 7 h.

After regeneration, rinse the column with standard eluent for at least 7 h.

Storage In the standard eluent




Chromatograms

Hydroxide/acetate eluent, (mod.), yoghurt,

1:1	000 diluted, 40 °C				Conc. (g/L)
1	Sucrose	64.5	4	Fructose	15.2
2	Galactose	4.2	5	Lactose	30.6
3	Glucose	10.0			

					conc. (g/ =/
1	Sucrose	5.0	3	unknown	-
2	Glucose	26.8	4	Fructose	59.4

Ordering information

Metrosep Carb 2 - 150/2.0 Metrosep Carb 2 Guard/2.0 Metrosep Carb 2 S-Guard/2.0 6.01090.220 6.01090.600 6.01090.610

Metrosep Carb 2 - 250/2.0 (6.01090.230)

The Metrosep Carb 2 - 250/2.0 IC column is particularly suitable for the determination of carbohydrates using alkaline eluents and pulsed amperometric detection. The high-capacity anion exchanger column is based on a styrol-divinylbenzene copolymer. It is stable in the range of pH = 0...14 and provides separation of monosaccharides and disaccharides. It is also suitable for the analysis of sugar alcohols, anhydrous sugars, amino sugars, etc. The 250 mm microbore version of the Metrosep Carb 2 separation column is optimized for complex separations.

Thanks to its low eluent consumption, it is particularly suitable for IC-MS coupling.

Applications

- Monosaccharides
- Disaccharides
- Sugar alcohols
- Anhydrous sugars
- Oligosaccharides
- Difficult matrices
- Complex separations
- IC-MS

Technical information

Substrate	Polystyrene-divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	250 x 2.0 mm
Column body	PEEK
Standard flow	0.13 mL/min
Maximum flow	0.30 mL/min
Maximum pressure	20 MPa
Particle size	5.0 µm
Organic modifier	In the eluent: 050 %
	acetonitrile or methanol
	In the sample: 0100 %
	acetone, acetonitrile or
	methanol
pH range	014
Temperature range	2060 °C

Eluents

Hydroxide/acetate eluent	Sodium hydroxide	10 mL/2 L	100 mmol/L	
(standard eluent)	(c = 20 mol/L)			
	Sodium acetate	1,640.7 mg/2 L	10 mmol/L	
Hydroxid eluent	Sodium hydroxide	1.0 mL/2 L	10 mmol/L	

Care

Regeneration

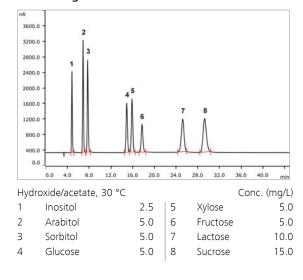
Note:

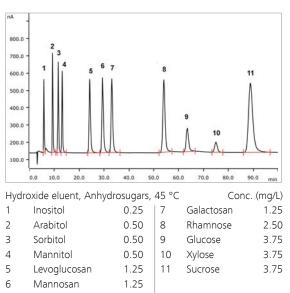
- 1. Use a flow ramp to establish the standard flow in the column within 5 min.
- 2. Rinse the column with the desired eluent for 2 h at 30 °C.

Organic contamination:

Rinse the column in the flow direction with 25 mL of solution (standard eluent in 50% acetonitrile) at a flow rate of 0.13 mL/min.

Inorganic contamination:


Rinse the column in the flow direction with a mixture of 100 mmol/L sodium hydroxide and 500 mmol/L sodium acetate at a flow rate of 0.13 mL/min for at least 7 h.


After regeneration, rinse the column with standard eluent for at least 7 h.

Storage In the standard eluent

Chromatograms

Ordering information

Metrosep Carb 2 - 250/2.0 Metrosep Carb 2 Guard/2.0 Metrosep Carb 2 S-Guard/2.0 6.01090.230 6.01090.600 6.01090.610

Separation columns

IC amino acid-separation column with optical detection (VIS) after post-column reaction

Metrosep Amino Acids 1 - 100/4.0 (6.4001.410)

152

The Metrosep Amino Acids 1 - 100/4.0 is the standard separation column for amino acids. The column is based on a sulfonated polystyrene-divinylbenzene material. The determination of amino acids is accomplished by means of photometric detection following a post-column reaction with ninhydrin.

The Metrosep Amino Acids 1 - 100/4.0 permits the separation of up to 44 amino acids in research and routine applications including all naturally occurring amino acids.

Applications

• Amino acids

Ammonium

Technical information

Substrate	Sulfonated polystyrene- divinylbenzene copolymer, lithium form
Column dimensions	100 x 4 0 mm
Column body	Stainless steel
Standard flow	0.4 mL/min
Maximum flow	0.5 mL/min
Maximum pressure	10 MPa
Particle size	5 µm
Organic modifier	0 5%, 10% acetonitrile
pH range	114
Temperature range	3090 °C
Capacity	2.9 mmol (K ⁺)

Eluents

LIUCIII				
Citrate/phenol eluent	A:	Lithium citrate	17.8 g/2 L	42.6 mmol/L
Gradient		Phenol	2.0 g/2L	10.6 mmol/L
		HCI		pH = 2.8
	B:	Lithium citrate	17.8 g/2L	42.6 mmol/L
		Lithium chloride	86.0 g/2L	1.0 mol/L
		Phenol	2.0 g/2L	10.6 mmol/L
		HCI		pH = 4.2
			Column temperature 50 °C	
PCR reagents				

PCR reag

Ninhydrin

Ninhydrin Hydrindantin Dimethyl sulfoxide Lithium acetate buffer (2 mol/L, pH = 5.2)with acetic acid)

Reactor temperature 120 °C

4.0 g/200 mL

0.16 g/200 mL

Care

Regeneration

In the event of temporary loss of column performance:

• Apply fresh eluent, rinse the instrument and column for 1 h at 0.20 mL/min at 65 °C

For minor contaminations:

• 120 min 0.3 mol/L lithium hydroxide with 0.25 g/L EDTA (0.20 mL/min, 90 °C)

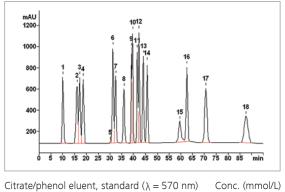
With contaminations caused by organic components: Rinse the column with the following solutions in sequence (0.2 mL/min, 65 °C):

0.11 mol/L

2.5 mmol/L

100 mL

100 mL


- 30 min ultrapure water
- 60 min 20% acetonitrile/water
- 60 min ultrapure water to completely remove the acetonitrile

Storage

Short-term: Storage in eluent with 2.5% acetonitrile Long-term: Storage in 0.3 mol/L lithium hydroxide with 5% acetonitrile.

Chromatogram

1	L-aspartic acid	2.5	10	L-methionine	2.5
2	L-serine	2.5	11	L-isoleucine	2.5
3	L-threonine	2.5	12	L-leucine	2.5
4	L-glutamic acid	2.5	13	L-tyrosine	2.5
5	L-proline	2.5	14	L-phenylalanine	2.5
6	Glycine	2.5	15	Ammonium	2.5
7	L-alanine	2.5	16	L-lysine	2.5
8	L-valine	2.5	17	L-histidine	2.5
9	L-cystine	1.25	18	L-arginine	2.5
			1		

Ordering information	
Metrosep Amino Acids 1 - 100/4.0	6.4001.410
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130

Separation columns

IC cation-separation columns for analyses without chemical suppression

Nucleosil 5SA - 125/4.0 (6.1007.000)

156

The Nucleosil 5SA IC cation column uses sulfonic acid groups for the separation of cations. With eluents containing organic acids and ethylenediamine, this column separates divalent cations such as magnesium and calcium as well as some of the transition metal elements (e.g. nickel, zinc, cobalt, manganese). The Nucleosil 5SA -125/4.0 is therefore the inexpensive and robust separation column for the determination of transition metals by direct conductivity measurement without post-column reaction. In addition to high concentrations of alkaline metals, calcium, and magnesium can be determined reliably. The column is only suitable for divalent cations. Monovalent cations elute at almost the same time as the injection peak.

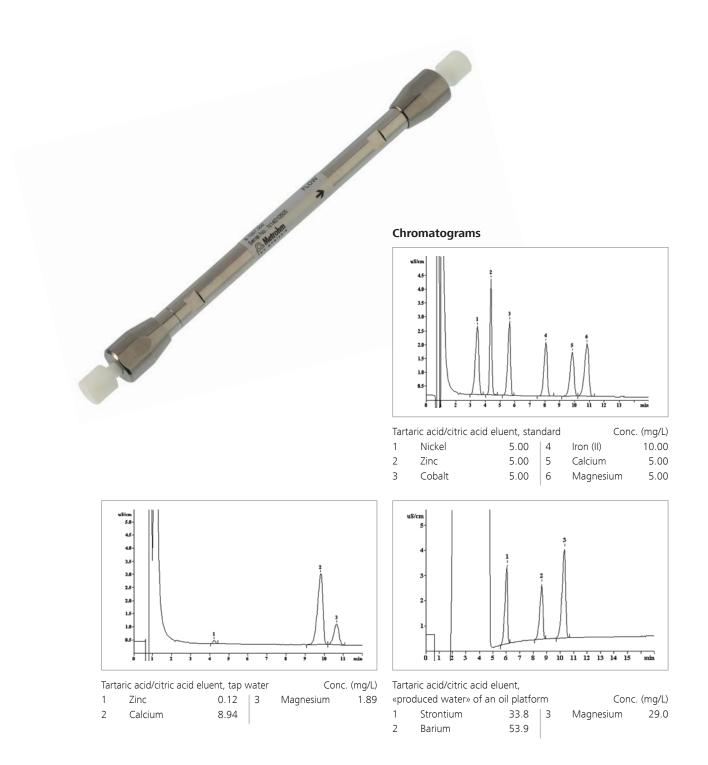
Applications

- Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cd^{2+} , Zn^{2+} , Mn^{2+}
- Mg^{2+} , Ca^{2+} in addition to a high amount of sodium

Technical information	
Substrate	Spherical silica gel with
	sulfonic acid groups
Column dimensions	125 x 4.0 mm
Column body	Stainless steel
Standard flow	1.5 mL/min
Maximum flow	5.0 mL/min
Maximum pressure	30 MPa
Particle size	5 µm
pH range	28
Capacity	95 µmol (K⁺)

Eluents

Tartaric acid/ citric acid eluent (standard eluent) Tartaric acid Citric acid Ethylenediamine Acetone 1200 mg/2 L 192 mg/2 L 360 mg/2 L 100 mL/2 L 4.0 mmol/L 0.5 mmol/L 3.0 mmol/L 5%


Care

Regeneration

Injection of 100 μL Na_2H_2EDTA (0.1 mol/L) – do not use alkaline EDTA solutions – or rinse with 30 mL HNO₃ (0.1 mol/L) at a flow rate of 0.5 mL/min.

Storage

For short periods (days) in the eluent, for longer periods (weeks) in methanol/water (1:4).

Ordering information

Nucleosil 5SA - 125/4.0 Nucleosil 5SA 2 Guard cartridge/4.0 Holder to Nucleosil 5SA 2 Guard Cartridge/4.0 (holder for guard column cartridges 6.1007.110) 6.1007.000 6.1007.110 6.2821.140

Metrosep C 3 - 100/4.0 (6.1010.410)

The innovative substrate on a polyvinyl alcohol base increases selectivity for monovalent and divalent cations significantly on this cation column. The peak forms are highly symmetrical.

> The shortest separation column of the Metrosep-C-3 product range is particularly suitable for rapid separations of standard cations and for the separation of larger organic amines.

Applications

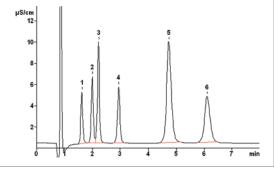
- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺, Mn²⁺, Co²⁺, Zn²⁺, Ni²⁺
- Larger organic amines
- Low detection limits
- Matrices with high pH

Technical information

Substrate	Polyvinyl alcohol with
	carboxyl groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifiers	050% acetonitrile,
	030% acetone,
	no methanol
pH range	212
Temperature range	2040 °C
Capacity	12 µmol (K ⁺)

Eluents

Nitric acid eluent (standard eluent) Nitric acid (c = 1 mol/L)


10 mL/2 L 5 mmol/L Column temperature 40 °C

Care

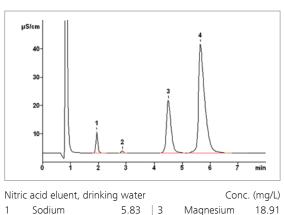
Regeneration Add 30% acetonitrile to the standard eluent. Storage For 1...3 days in the eluent; in ultrapure water for longer storage. Recommended temperature: 4...8 °C

Chromatograms

Nitric acid eluent, standard

Lithium 1

2 Sodium 3 Ammonium


Conc. (mg/L) 1.00 | 4 Potassium 5.00 5 Magnesium 5.00 6 Calcium

10.00

10.00

10.00

2

Sodium	5.83	3	I
Potassium	1.45	4	(

18.91 Magnesium Calcium 87.51

Ordering information Metrosep C 3 - 100/4.0 Metrosep C 3 Guard/4.0 Metrosep C 3 S-Guard/4.0

6.1010.410 6.1010.450 6.1010.460

Metrosep C 3 - 150/4.0 (6.1010.420)

The innovative substrate on a polyvinyl alcohol base increases selectivity for monovalent and divalent cations significantly. The peak forms on this cation column are highly symmetrical.

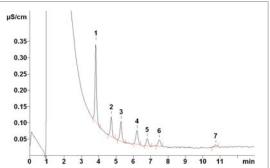
The middle separation column of the Metrosep-C-3 product range is particularly suitable for rapid separations of standard cations and certain transition metal cations as well as for the separation of mid-sized organic amines.

Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺, Mn²⁺, Co²⁺, Zn²⁺, Ni²⁺
- Organic amines
- Low detection limits
- Matrices with high pH

Technical information

Substrate	Polyvinyl alcohol with carboxyl groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifiers	050% acetonitrile,
	030% acetone,
	no methanol
pH range	212
Temperature range	2040 °C
Capacity	18 µmol (K⁺)


Eluents

Nitric acid eluent	Nitric acid (c = 1 mol/L)	10 mL/2 L	5 mmol/L
(standard eluent)		Column temperature 40 °C	
Nitric acid eluent	Nitric acid ($c = 1 \text{ mol/L}$)	5 mL/2 L	2.5 mmol/L

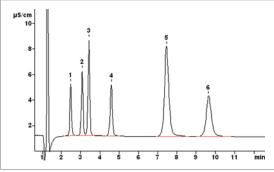
Care

Regeneration Add 30% acetonitrile to the standard eluent. Storage For 1...3 days in the eluent; in ultrapure water for longer storage. Recommended temperature: 4...8 °C

5

6

7


Nitric acid eluent, modified,

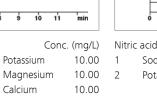
4

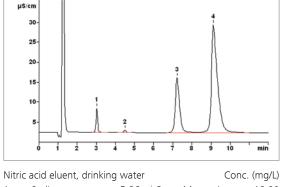
traces	of cations, 40 °C	
1	Lithium	0.050
2	Sodium	0.050
3	Ammonium	0.050

Monoethylamine 0.100

Conc	. (µg/L)
Potassium	0.050
Diethylamine	0.100
Triethylamines	0.100

4


5


6

1.00

5.00

5.00

Sodium	5.86	3	Magnesium	18.90
Potassium	1.41	4	Calcium	87.48

Ordering information

Nitric acid eluent, standard

Lithium

Sodium

Ammonium

1

2

3

Metrosep C 3 - 150/4.0 Metrosep C 3 Guard/4.0 Metrosep C 3 S-Guard/4.0 6.1010.420 6.1010.450 6.1010.460

Metrosep C 3 - 250/4.0 (6.1010.430)

162

The innovative substrate on a polyvinyl alcohol base increases selectivity for monovalent and divalent cations significantly. A characteristic of this is the number of «theoretical plates per meter». On the Metrosep C 3 - 250/4.0, for example, 42,000 plates are achieved for sodium, 51,000 for ammonium, and 31,000 for barium with its delayed elution. The peak forms on this cation column are highly symmetrical.

The selectivity of the Metrosep C 3 - 250/4.0 also permits the separation of transition metals. Because Metrohm ion chromatographs generally determine the cations without chemical suppression, the transition metals can be analyzed on the Metrosep C 3 - 250/4.0 together with the alkaline and earth alkaline metals.

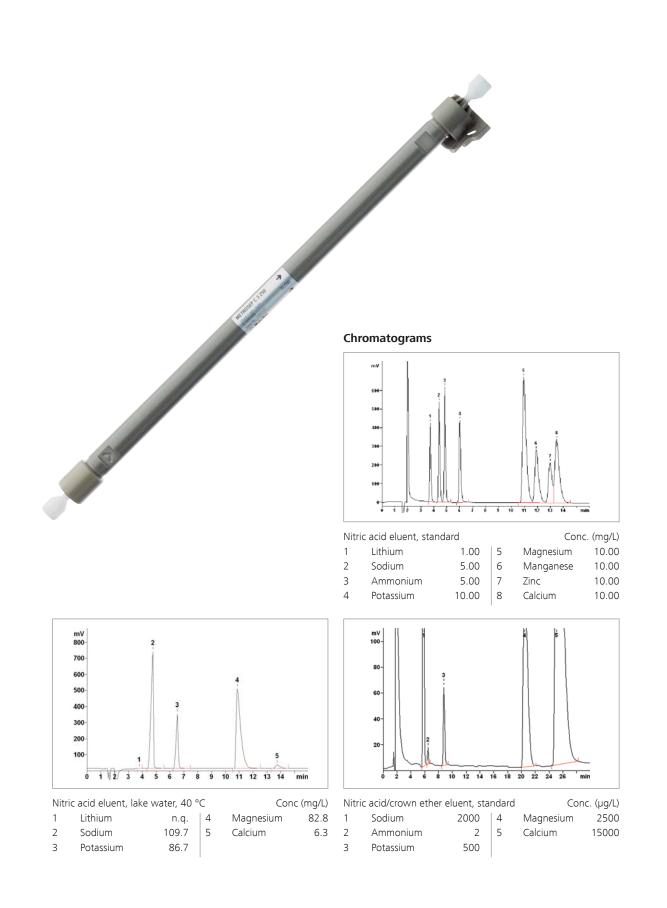
Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺, Mn²⁺, Co²⁺, Zn²⁺, Ni²⁺
- Good Na⁺/NH₄⁺ separation
- Low detection limits
- Matrices with high pH

Technical information

Polyvinyl alcohol with carboxyl groups
250 x 4.0 mm
PEEK
1.0 mL/min
1.5 mL/min
15 MPa
5 µm
050% acetonitrile,
030% acetone,
no methanol
212
2040 °C
30 µmol (K⁺)

Eluents


Nitric acid eluent	Nitric acid (c = 1 mol/L)	10 mL/2 L	5 mmol/L
(standard eluent)		Column temperature 40 °C	
Nitric acid/crown ether	Nitric acid (c = 1 mol/L)	7 mL/2 L	3.5 mmol/L
eluent	Crown ether 18-crown-6	264 mg/2 L	0.5 mmol/L
		Column temperature 40 °C	

Care

Regeneration Add 30% acetonitrile to the standard eluent.

Storage

For 1...3 days in the eluent; in ultrapure water for longer storage. Recommended temperature: 4...8 °C

Ordering information	
Metrosep C 3 - 250/4.0	6.1010.430
Metrosep C 3 Guard/4.0	6.1010.450
Metrosep C 3 S-Guard/4.0	6.1010.460

Metrosep C 4 - 50/4.0 (6.1050.450)

164 The Metrosep C 4 - 50/4.0 is the shortest separation column in the Metrosep-C-4 product range. With a capacity of 5 µmol (K*), it is particularly suitable for very rapid separations. The low capacity makes it possible to quickly analyze the earth alkaline metals with their delayed elution. Thanks to the short retention times, applications that, in terms of analysis duration, were previously possible only with an FIA system (Flow Injection Analysis system) can now be transferred over to ion chromatography.

Applications

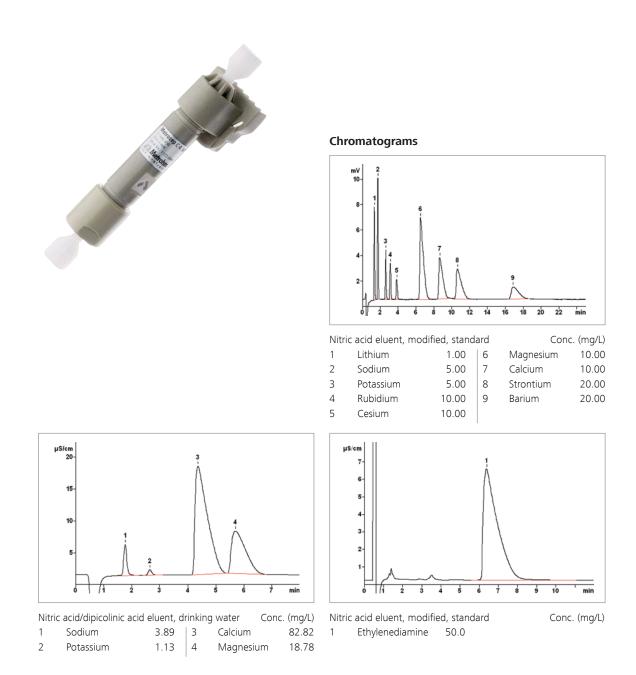
- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Alkylamines
- Very rapid separations
- Simple sample matrices

Technical information

Substrate	Silica gel with	
	carboxyl groups	
Column dimensions	50 x 4.0 mm	
Column body	PEEK	
Standard flow	0.9 mL/min	
Maximum flow	2.0 mL/min	
Maximum pressure	25 MPa	
Particle size	5 µm	
Organic modifier	0100% (no methanol)	
pH range	27	
Temperature range	2060 °C	
Capacity	5 µmol (K⁺)	

Eluents

Nitric acid/	Nitric acid (c = 1 mol/L)	3.4 mL/2 L	1.7 mmol/L
dipicolinic acid eluent	Dipicolinic acid	234 mg/2 L	0.7 mmol/L
(standard eluent)			
Nitric acid eluent	Nitric acid (c = 1 mol/L)	4 mL/2 L	2.0 mmol/L
(modified)			


Care

Regeneration

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO₃ + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Storage In the eluent or in ultrapure water

Ordering information	
Metrosep C 4 - 50/4.0	6.1050.450
Metrosep C 4 Guard/4.0	6.1050.500
Metrosep C 4 S-Guard/4.0	6.1050.510

Metrosep C 4 - 100/4.0 (6.1050.410)

166

The 100 mm version of the Metrosep C 4 column is intended for rapid determinations of the standard cations. Very short retention times are achieved, for which the elution times of sodium and ammonium nevertheless differ by 25 s. When a special eluent is used, the six cations lithium, ammonium, sodium, calcium, magnesium, and potassium can be determined in less than 5 minutes with the Metrosep C 4 - 100/4.0.

Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Lipophilic amines with short retention times
- Rapid separations

Technical information

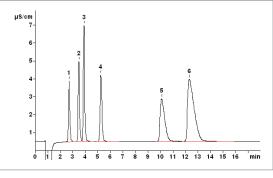
Substrate	Silica gel with
	carboxyl groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	0.9 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	25 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	10 µmol (K ⁺)

Eluents

Nitric acid/	Nitric acid (c = 1 mol/L)	3.4 mL/2 L	1.7 mmol/L
dipicolinic acid eluent	Dipicolinic acid	234 mg/2 L	0.7 mmol/L
(standard eluent)			
Nitric acid/	Nitric acid (c = 1 mol/L)	3.4 mL/2 L	1.7 mmol/L
dipicolinic acid/acetone	Dipicolinic acid	234 mg/2 L	0.7 mmol/L
eluent	Acetone	100 mL/2 L	5%
Nitric acid/	Nitric acid (c = 1 mol/L)	4.0 mL/2 L	2.0 mmol/L
dipicolinic acid eluent	Dipicolinic acid	401 mg/2 L	1.2 mmol/L
(modified)			

Care

Regeneration


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO₃ + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Storage

In the eluent or in ultrapure water

Chromatograms

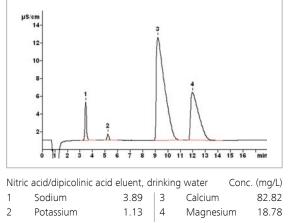
5.00

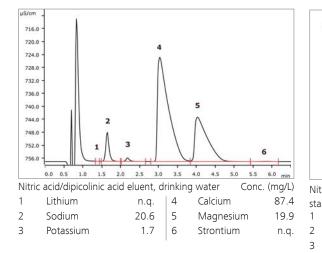
5.00

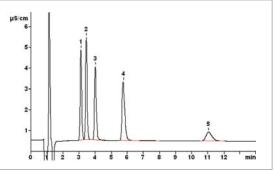
Nitric acid/dipicolinic acid eluent, standard 1.00

1 Lithium 2 Sodium

Ammonium


3


Conc. (mg/L) 4 Potassium 5 Calcium 6 Magnesium


10.00

10.00

10.00

Nitric acid/dipicolinic acid/acetone eluent,

			-7	
andard			Cor	nc. (mg/L)
Sodium	5.00	4	Guanidine	15.00
Ammonium	5.00	5	Aminoguanidi	ne 15.00
Methylamine	5.00			

6.1050.410 6.1050.500

6.1050.510

Metrosep C 4 - 100/4.0 Metrosep C 4 Guard/4.0 Metrosep C 4 S-Guard/4.0

Ordering information

Metrosep C 4 - 150/4.0 (6.1050.420)

168

The Metrosep C 4 - 150/4.0 is the universal standard column in cation analysis. High separating efficiency in a brief time. The Metrosep C 4 - 150/4.0 is the ideal separation column for the analysis of alkaline and earth alkaline metals in aqueous media.

Applications

- Standard column
- Amines
- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Universal applications
- Different matrices

Technical information

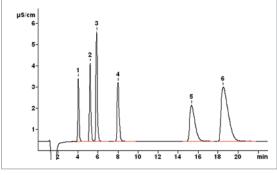
Substrate	Silica gel with
	carboxyl groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.9 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	25 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	15 µmol (K ⁺)

Eluents

Nitric acid/ dipicolinic acid eluent (standard eluent)	Nitric acid (c = 1 mol/L) Dipicolinic acid	3.4 mL/2 L 234 mg/2 L	1.7 mmol/L 0.7 mmol/L
Nitric acid/	Nitric acid (c = 1 mol/L)	3.4 mL/2 L	1.7 mmol/L
dipicolinic acid/	Dipicolinic acid	234 mg/2 L	0.7 mmol/L
crown ether eluent	18-crown-6	26.4 mg/2 L	0.05 mmol/L

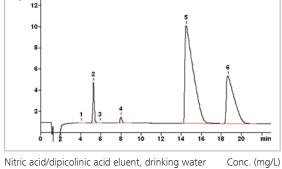
Care

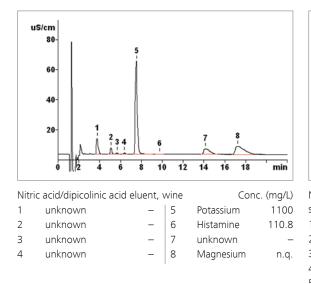
Regeneration

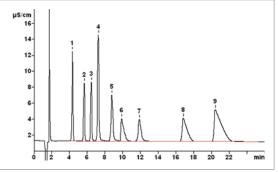

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L HNO₃ + 4 mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Storage


In the eluent or in ultrapure water




Nitric acid/dipicolinic acid eluent, standard Conc. (mg/L) 1 Lithium 1.00 4 Potassium 10.00 2 Sodium 5.00 5 Calcium 10.00 3 Ammonium 5.00 10.00

6 Magnesium

1 Lithium n.q. 4 Potassium 1.13 2 Sodium 3.89 5 Calcium 82.82 3 Ammonium n.q. 6 Magnesium 18.78

Nitric acid/dipicolinic acid/crown ether eluent,

standa	ard			Conc. (I	mg/L)
1	Lithium	2.00	6	Potassium	10.0
2	Sodium	5.00	7	Triethanolamine	30.0
3	Ammonium	5.00	8	Calcium	10.0
4	Monoethanolamine	30.0	9	Magnesium	10.0
5	Diethanolamine	30.0			

Ordering information

Metrosep C 4 - 150/4.0 Metrosep C 4 Guard/4.0 Metrosep C 4 S-Guard/4.0 6.1050.420 6.1050.500 6.1050.510

Metrosep C 4 - 250/4.0 (6.1050.430)

The Metrosep C 4 - 250/4.0 is the cation column with the greatest capacity in the C 4 series. It is predestined for applications which require the highest separating efficiency. Samples with extreme differences in concentrations can be analyzed reliably with this column. The performance capability of the column is demonstrated, for example, in connection with the analysis of boiler feed water for which the requirement is the perfect quantification of 7 µg/L sodium in addition to 7 mg/L monoethanolamine (MEA). With the C 4 - 250/4.0, not only amines and transition metals but also alkaline and alkaline earth metals can be determined in a single run.

Applications

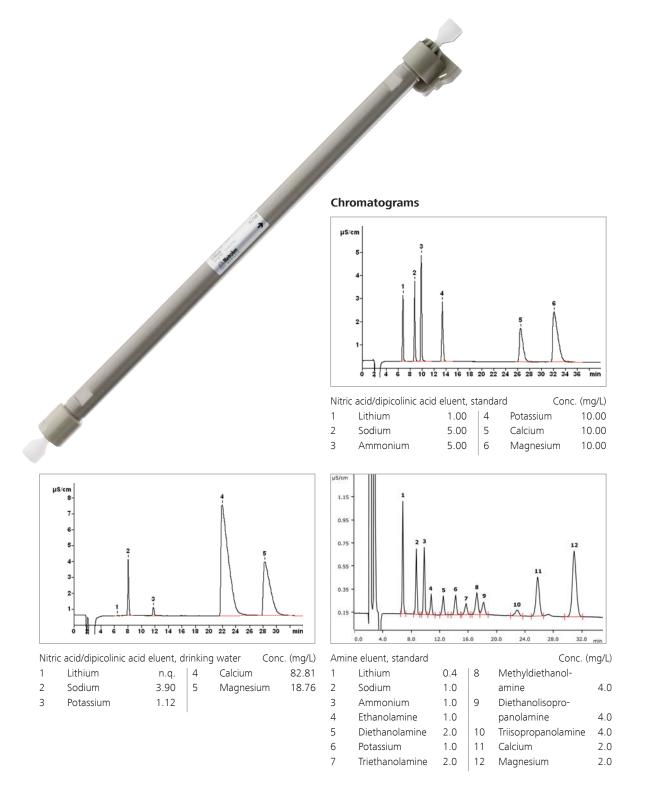
- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Pb²⁺, amines
- Very good Na⁺/NH₄⁺ separation
- NH₄⁺, (CH₃)NH₃⁺, (CH₃)₂NH₂⁺, (CH₃)₃NH⁺, (CH₃)₄N⁺, and the respective ethanolamines
- Difficult separation problems
- Great differences in concentration
- Transition metals

Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	0.9 mL/min
Maximum flow	2.0 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	25 µmol (K⁺)

Eluents

Nitric acid/ dipicolinic acid eluent (standard eluent)	Nitric acid (c = 1 mol/L) Dipicolinic acid	3.4 mL/2 L 234 mg/2 L	1.7 mmol/L 0.7 mmol/L
Amine eluent	Nitric acid (c = 1 mol/L)	3.4 mL/2 L	1.7 mmol/L
	Dipicolinic acid	234 mg/2 L	0.7 mmol/L
	18-crown-6	26.4 mg/2 L	0.05 mmol/L
	Acetone	25 mL/2 L	2.5%


Care

Regeneration

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Storage In the eluent or in ultrapure water

Ordering information	
Metrosep C 4 - 250/4.0	6.1050.430
Metrosep C 4 Guard/4.0	6.1050.500
Metrosep C 4 S-Guard/4.0	6.1050.510

Metrosep C 5 - 150/4.6 (6.4000.320)

172

The Metrosep C 5 - 150/4.6 is based on a sulfonated polystyrene/divinylbenzene polymer. The strongly acidic cation-exchanger groups make it a preferred separation column for the determination of divalent cations, particularly of transition metals. The column is preferably also used with UV/VIS detection after post-column reaction. This column may also be used with sequential suppression.

Applications

• Special column for transition metals

Technical information

Substrate	Sulfonated polystyrene/
	divinylbenzene polymer
Column dimensions	150 x 4.6 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	4.9 MPa
Particle size	12 µm
Organic modifier	05% (10% acetonitrile)
pH range	114 (optimal 26)
Temperature range	2070 °C
Capacity	15 µmol (K⁺)

Eluents

Oxalic acid/citric acid	Oxalic acid	1.080 g/2 L	6.0 mmol/L
(standard eluent)	Citric acid	1.153 g/2 L	3.0 mmol/L
	КОН		pH = 4.2
PCR reagents			
PAR	PAR (4(2-pyridylazo) resorcinol	64.6 mg/2 L	0.15 mmol/L
	Ammonium hydroxide (c = 1 mol/L)	800 mL/2 L	0.4 mol/L
	Nitric acid (c = 1 mol/L)	160 mL/2 L	80 mmol/L
			pH = 1011

Care

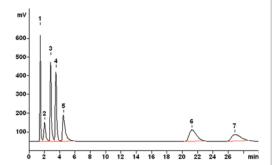
Regeneration

Slight contamination (e.g. divalent cations): Operate the column with eluent (0.5 mL/min, room temperature) and inject 100 μ L 1 mol/L nitric acid 4...6 times in succession.

More extreme contamination: In the event of heavier contamination, rinse the column with the following solutions in sequence (0.5 mL/min, room temperature):

- 60 min (30 mL) 100 mmol/L tartaric acid
- 60 min (30 mL) 100 mmol/L nitric acid
- Eluent for rinsing the column

Contamination from proteins and nitrogen components: Rinse the column with the following solutions in sequence (0.5 mL/min, room temperature):


- 30 min ultrapure water
- 60 min (30 mL) 100 mmol/L sodium hydroxide
- 60 min (30 mL) 100 mmol/L nitric acid
- Eluent for rinsing the column

Storage

Immediately after use, rinse to 3.0 mmol/L nitric acid.

Chromatogram

Oxalic acid/citric acid eluent, PCR with PAR,

VIS detection ($\lambda = 530$ nm), standard			Cond	:. (mg/L)	
1	Copper	5.00	5	Lead	30.0
2	Nickel	3.00	6	Manganese	4.00
3	Zinc	4.00	7	Cadmium	8.00
4	Cobalt	5.00			
			1		

Ordering information	
Metrosep C 5 - 150/4.6	6.4000.320
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130
Metrosep BP 1 Guard/2.0	6.1015.100

Metrosep C 6 - 100/4.0 (6.1051.410)

174 The 100 mm version of the Metrosep C 6 column is intended for the determination of standard cations, e.g., in drinking water. Excellent separation of sodium and ammonium is still achieved, even with the very short retention times applied. The high capacity of the C 6 material permits larger sample volumes.

Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Lipophilic amines with short retention times
- Rapid separations

Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	0.9 mL/min
Maximum flow	3.5 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	20 µmol (K ⁺)

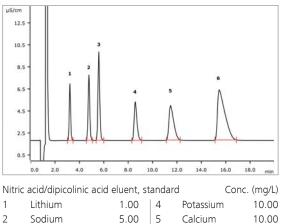
Eluents

Nitric acid/	Nitric acid (c = 1 mol/L)	3.4 mL/2 L	1.7 mmol/L
dipicolinic acid eluent	Dipicolinic acid	568 mg/2 L	1.7 mmol/L
(standard eluent)			
0 11 11/			
Oxalic acid/	Oxalic acid	360 mg/2 L	2.0 mmol/L
Oxalic acid/ dipicolinic acid/	Oxalic acid Dipicolinic acid	360 mg/2 L 668 mg/2 L	2.0 mmol/L 2.0 mmol/L

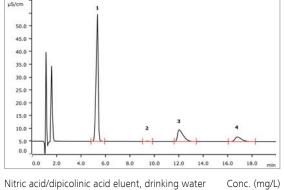
Care

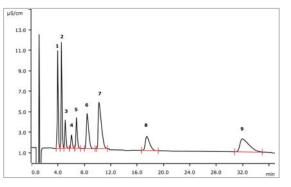
Regeneration

The column must be rinsed with ultrapure water before and after the regeneration.


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60).

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.


Storage Standard eluent at 10...22 °C


Chromatograms

2 3	Joalaini	5.00	5	culcium
3 A	Ammonium	5.00	6	Magnesium

1Sodium112.123Calcium33.442Potassium0.754Magnesium6.88

Oxalic acid/dipicolinic acid/acetonitril eluent, standard

				Cond	:. (mg/L)
1	Sodium	20	6	Calcium	20
2	Ammonium	20	7	Magnesium	20
3	Monoethanolamine	20	8	Strontium	20
4	Potassium	20	9	Barium	40
5	Diethanolamine	20			

Ordering information Metrosep C 6 - 100/4.0 Metrosep C 4 Guard/4.0 Metrosep C 4 S-Guard/4.0

6.1051.410 6.1050.500 6.1050.510

10.00

Metrosep C 6 - 150/4.0 (6.1051.420)

176

The high-capacity C 6 material makes the Metrosep C 6 - 150/4.0 separation column the optimum solution for the separation of standard cations with high differences in concentration in conjunction with reasonable retention times. Drinking water with low ammonium contents can be determined with this column.

Applications

- Standard column
- Amines
- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Universal applications
- Different matrices
- Transition metals

Technical information

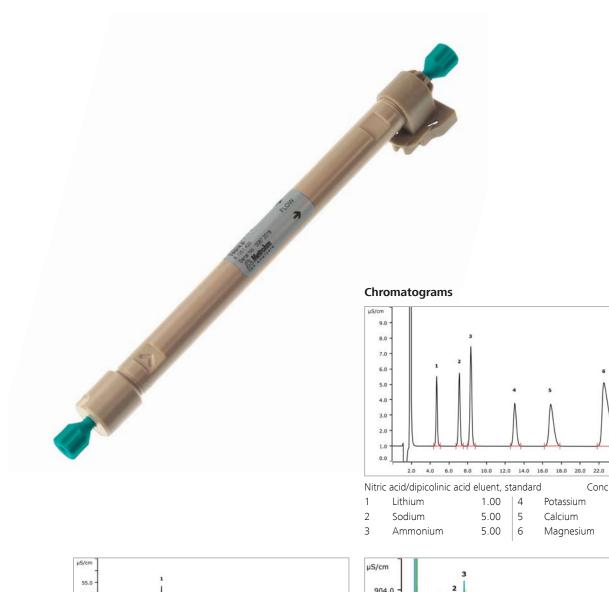
Substrate	Silica gel with
	carboxyl groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	0.9 mL/min
Maximum flow	2.5 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	30 µmol (K+)

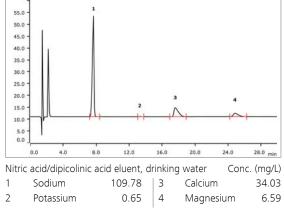
Eluents

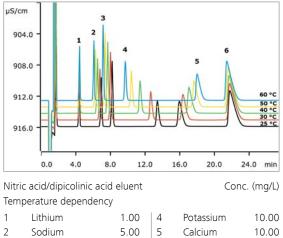
Nitric acid/ dipicolinic acid eluent (standard eluent) Nitric acid (c = 1 mol/L) Dipicolinic acid 3.4 mL/2 L 568 mg/2 L 1.7 mmol/L 1.7 mmol/L

Care

Regeneration


The column must be rinsed with ultrapure water before and after the regeneration.


Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60).


Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Storage

Standard eluent at 10...22 °C

5.00 6

24.0 min

10.00

10.00

10.00

10.00

Magnesium

Conc. (mg/L)

Ordering information			
Metrosep C 6 - 150/4.0	6.1051.420		
Metrosep C 4 Guard/4.0	6.1050.500		
Metrosep C 4 S-Guard/4.0	6.1050.510		

3

Ammonium

Metrosep C 6 - 250/4.0 (6.1051.430)

178

The Metrosep C 6 - 250/4.0 is the cation column with the greatest capacity in the C 6 series. It is predestined for applications which require the highest separating efficiency. Samples with extreme differences in concentrations can be analyzed reliably with this column. The separation of sodium and ammonium is particularly outstanding here.

Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Pb²⁺, amines
- Excellent Na⁺/NH₄⁺ separation
- NH₄⁺, (CH₃)NH₃⁺, (CH₃)₂NH₂⁺, (CH₃)₃NH⁺, (CH₃)₄N⁺, and the respective ethanolamines
- Difficult separation problems
- Great differences in concentration
- Transition metals

Technical information

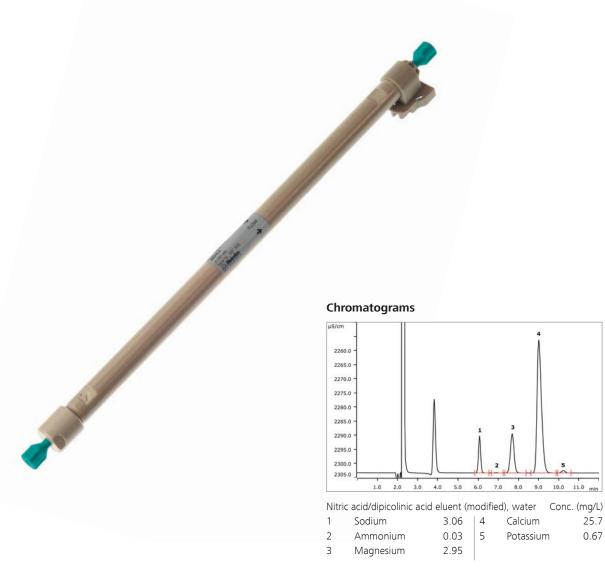
Substrate	Silica gel with
	carboxyl groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	0.9 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	20 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	50 µmol (K⁺)

Eluents

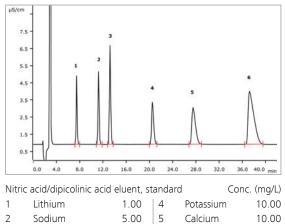
Nitric acid/ dipicolinic acid eluent (standard eluent)	Nitric acid (c = 1 mol/L) Dipicolinic acid	3.4 mL/2 L 568 mg/2 L	1.7 mmol/L 1.7 mmol/L
Nitric acid/	Nitric acid (c = 1 mol/L)	16 mL/2 L	8.0 mmol/L
dipicolinic acid eluent	Dipicolinic acid	434 mg/2 L	1.3 mmol/L
(modified)			

Care

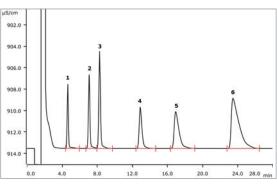
Regeneration


The column must be rinsed with ultrapure water before and after the regeneration.

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.9 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60).


Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.9 mL/min.

Storage


Standard eluent at 10...22 °C

10.00

5 Sodium 5.00 Calcium 5.00 Ammonium 6 Magnesium

Nitr	ic acid/dipicolinic ac	id eluent, m	etha	inol 50%	Conc. (mg/L)
1	Lithium	1.00	4	Potassium	10.00
2	Sodium	5.00	5	Calcium	10.00
3	Ammonium	5.00	6	Magnesiu	m 10.00

Ordering information

3

Metrosep C 6 - 250/4.0 Metrosep C 4 Guard/4.0 Metrosep C 4 S-Guard/4.0 6.1051.430 6.1050.500 6.1050.510

25.7

0.67

Separation columns

Microbore IC cation-separation columns for lower eluent consumption and greater sensitivity

Metrosep C 4 - 100/2.0 (6.1050.210)

182

The short version of the Metrosep C 4 column with 2 mm inner diameter is intended for rapid determinations of the standard cations. Very short retention times are achieved, for which the elution times of sodium and ammonium nevertheless differ by 25 s. When a special eluent is used, the six cations lithium, ammonium, sodium, calcium, magnesium, and potassium can be determined in less than 5 minutes with the Metrosep C 4 - 100/2.0. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Lipophilic amines with short retention times
- High flow rate fast separations
- Fast analysis

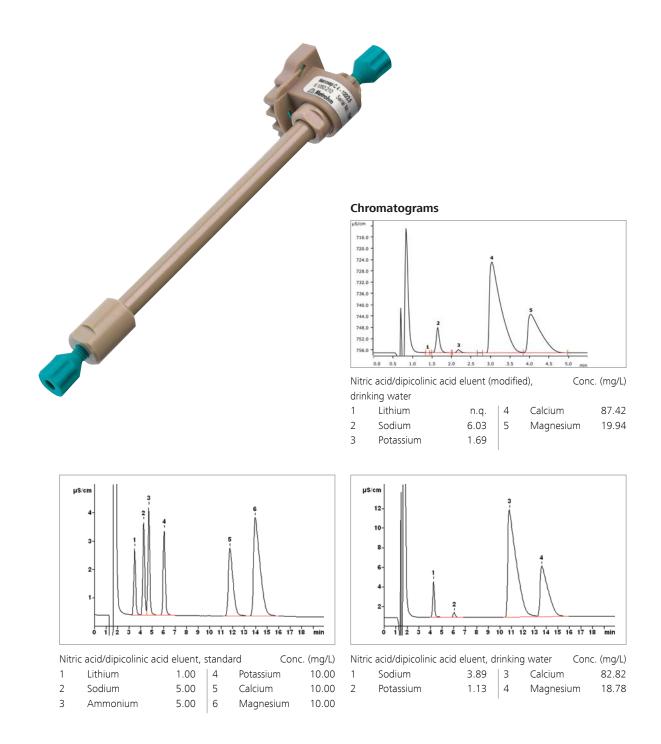
Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	100 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	1.6 mL/min
Maximum pressure	25 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	3 µmol (K+)

Eluents

Nitric acid/ dipicolinic acid eluent	Nitric acid (c = 1 mol/L) Dipicolinic acid	3.4 mL/2 L 234 mg/2 L	1.7 mmol/L 0.7 mmol/L
(standard eluent) Nitric acid/	Nitric acid (c = 1 mol/L)	4.0 mL/2 L	2.0 mmol/L
dipicolinic acid eluent	Dipicolinic acid	401 mg/2 L	1.2 mmol/L
(modified)			

Care


Regeneration

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.2 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.2 mL/min.

Storage

In the eluent or in ultrapure water

Ordering information Metrosep C 4 - 100/2.0

Metrosep C 4 Guard/2.0 Metrosep C 4 S-Guard/2.0 6.1050.210 6.1050.600 6.1050.610

Metrosep C 4 - 150/2.0 (6.1050.220)

184

The Metrosep C 4 - 150/2.0 is the universal standard column in cation analysis of microbore separation columns. High separating efficiency in a brief time. The Metrosep C 4 - 150/2.0 is the ideal separation column for the analysis of alkaline and earth alkaline metals in aqueous media. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Amines
- Transition metals

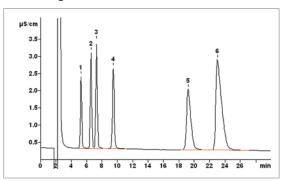
Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	150 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	1.1 mL/min
Maximum pressure	25 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	4 µmol (K⁺)

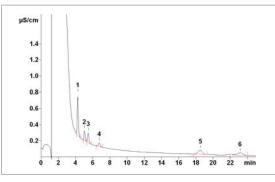
Eluents

Nitric acid/ dipicolinic acid eluent (standard eluent)	Nitric acid (c = 1 mol/L) Dipicolinic acid	3.4 mL/2 L 234 mg/2 L	1.7 mmol/L 0.7 mmol/L
Nitric acid/ dipicolinic acid eluent	Nitric acid (c = 1 mol/L) Dipicolinic acid	4.0 mL/2 L 43.6 mg/2 L	2.0 mmol/L 0.13 mmol/L
(modified) Nitric acid eluent	Nitric acid (c = 1 mol/L)	4.0 mL/2 L	2.0 mmol/L

Care

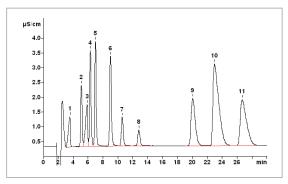

Regeneration

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.2 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water. Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.2 mL/min.


Storage In the eluent or in ultrapure water

Chromatograms

Nitric	acid/dipicolinic acid	eluent, st	andard	Conc.	(mg/L)
1	Lithium	1.00	4	Potassium	10.00
2	Sodium	5.00	5	Calcium	10.00
3	Ammonium	5.00	6	Magnesium	10.00



Nitric acid eluent, traces of cations (MiPCT), 40 °C 1 Lithium 0.50 4 Pa 2 Sodium 0.50 5 M

Ammonium

3

cations			
		Con	c. (µg/L)
0.50	4	Potassium	0.50
0.50	5	Magnesium	0.50
0.50	6	Calcium	0.50

Nitric	acid/dipicolinic acid e	eluent (m	od.), s [.]	tandard C	onc. (mg/L)
1	Zinc	2.50	7	Lead	2.50
2	Lithium	0.25	8	Cesium	2.50
3	Cobalt	2.50	9	Manganese	2.50
4	Sodium	1.25	10	Magnesium	n 2.50
5	Ammonium	1.25	11	Calcium	2.50
6	Potassium	2.50			

Ordering information	
Metrosep C 4 - 150/2.0	6.1050.220
Metrosep C 4 Guard/2.0	6.1050.600
Metrosep C 4 S-Guard/2.0	6.1050.610

Metrosep C 4 - 250/2.0 (6.1050.230)

The Metrosep C 4 - 250/2.0 is the cation column with the greatest capacity in the C 4 series with 2 mm inner diameter. It is predestined for applications which require the highest separating efficiency. Samples with high differences in concentrations can be analyzed reliably with this column. The performance capability of the column is demonstrated, for example, in connection with the analysis of sodium traces in addition to monoethanolamine (MEA). With the C 4 - 250/2.0, not only amines and transition metals but also alkaline and alkaline earth metals can be determined in a single run. With its low eluent flow, this column is particularly suitable for IC-MS coupling.

Applications

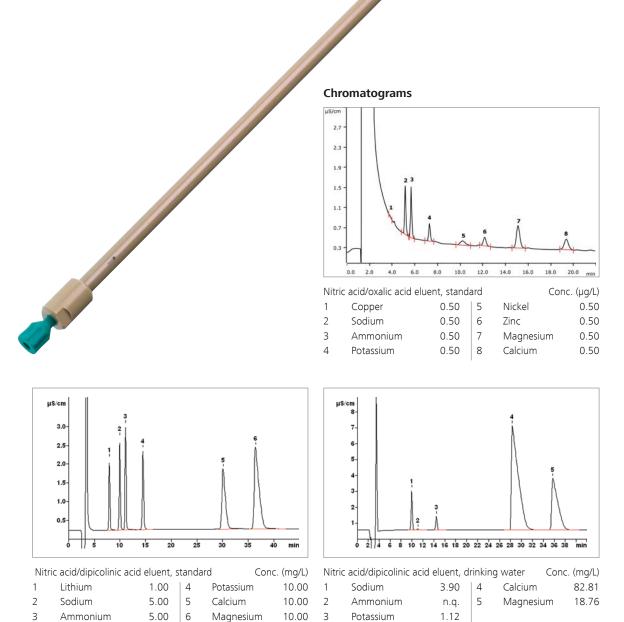
- Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Pb²⁺, amines
- Good Na⁺/NH₄⁺ separation
- NH₄⁺, (CH₃)NH₃⁺, (CH₃)₂NH₂⁺, (CH₃)₃NH⁺, (CH₃)₄N⁺, and the respective ethanolamines
- Difficult separation problems
- High differences in concentration
- Transition metals

Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	250 x 2.0 mm
Column body	PEEK
Standard flow	0.2 mL/min
Maximum flow	0.8 mL/min
Maximum pressure	25 MPa
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Temperature range	2060 °C
Capacity	6 µmol (K⁺)

Eluents

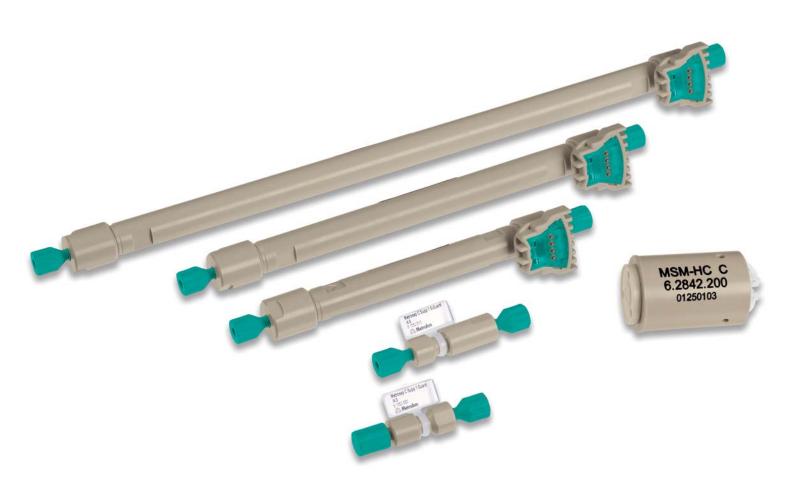
Nitric acid/ dipicolinic acid eluent (standard eluent)	Nitric acid (c = 1 mol/L) Dipicolinic acid	3.4 mL/2 L 234 mg/2 L	1.7 mmol/L 0.7 mmol/L
Nitric acid/	Nitric acid (c = 1 mol/L)	5.0 mL/2 L	2.5 mmol/L
oxalic acid eluent	Oxalic acid	90 mg/2 L	0.5 mmol/L


Care

Regeneration

Organic contamination: Rinse the column in the opposite flow direction at a flow rate of 0.2 mL/min for 1 h with ultrapure water, then for 1 h with acetonitrile/water (40/60), and finally for 1 h with ultrapure water.

Inorganic contamination: Rinse the column in the opposite flow direction with 10 mmol/L $HNO_3 + 4$ mmol/L dipicolinic acid for 1 h at a flow rate of 0.2 mL/min.


Storage In the eluent or in ultrapure water

3 Ammonium

> 6.1050.230 6.1050.600 6.1050.610

Ordering information Metrosep C 4 - 250/2.0 Metrosep C 4 Guard/2.0 Metrosep C 4 S-Guard/2.0

Separation columns

IC cation-separation columns for analyses with chemical suppression

Metrosep C Supp 1 - 100/4.0 (6.1052.410)

190

The short version of the Metrosep C Supp 1 is used for the rapid determination of cations in the µg/L range with conductivity detection following sequential suppression.

The baseline noise in cation analysis is improved by the suppression. This results in lower detection limits for the cations to be determined.

Applications

- Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Samples with low concentrations
- Larger amines
- Low limits of detection
- Fast analysis
- Excellent peak shape
- Matrix with high pH

Technical information

Substrate	Polyvinyl alcohol with carboxyl groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifier	050% acetonitrile,
	030% acetone,
	no methanol
pH range	112
Temperature range	2040 °C
Capacity	12 µmol (K+)

Eluents

Nitric acid eluent (standard eluent) Nitric acid (c = 1 mol/L) Rubidium (from rubidium nitrate)

10 mL/2 L	5.0 mmol/L
172.5 µg/2 L (RbNO₃)	50 µg/L Rb⁺

Care

Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

Regeneration:

- Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Rinse the column with ultrapure water before and after regeneration.

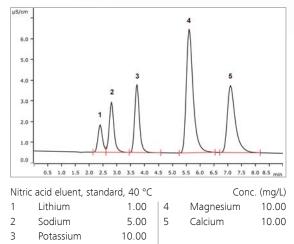
Depending on the type of contamination, proceed in accordance with one of the following instructions:

Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:

- 1. 1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (30:70)
- 3. 1 h with ultrapure water

Inorganic contaminations:


- 1. Add 30% acetonitrile to the standard eluent.
- 2. Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h.

Storage

Store the column in ultrapure water at 4...8 °C. Do not store the column below 0 °C

Chromatogram

Metrosep C Supp 1 - 100/4.0
Metrosep C Supp 1 Guard/4.0
Metrosep C Supp 1 S-Guard/4.0

6.1052.410 6.1052.500 6.1052.510

Metrosep C Supp 1 - 150/4.0 (6.1052.420)

192 The Metrosep C Supp 1 - 150/4.0 separation column is the column of choice for the determination of low concentrations of standard cations.

Detection limits below one μ g/L are achieved through low baseline noise after sequential suppression.

Applications

- Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Samples with low concentrations
- Organic amines
- Low limits of detection
- Transition metals
- Fast analysis
- Excellent peak shape
- Matrix with high pH

Technical information	
Substrate	Polyvinyl alcohol with
	carboxyl groups
Column dimensions	150 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	15 MPa

Maximum pressure15 MPaParticle size5 μmOrganic modifier0...50% acetonitrile,
0...30% acetone,
no methanolpH range1...12Temperature range20...40 °CCapacity18 μmol (K*)

10 mL/2 L 5.0 mmol/L 172.5 μg/2 L (RbNO₃) 50 μg/L Rb⁺

Eluents

Nitric acid eluent (standard eluent) Nitric acid (c = 1 mol/L) Rubidium (from rubidium nitrate)

Care

Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

Regeneration:

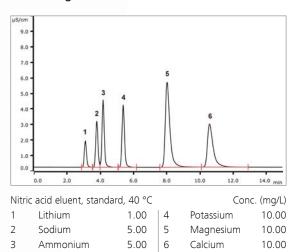
- Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Rinse the column with ultrapure water before and after regeneration.

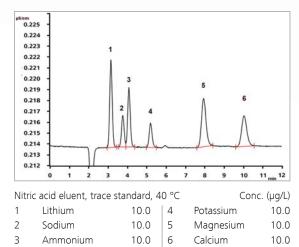
Depending on the type of contamination, proceed in accordance with one of the following instructions:

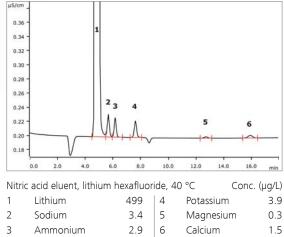
Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:

- 1.1 h with ultrapure water
- 2. 1 h with acetonitrile-water mixture (30:70)
- 3.1 h with ultrapure water


Inorganic contaminations:


- 1. Add 30% acetonitrile to the standard eluent.
- 2. Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h.


Storage

Store the column in ultrapure water at 4...8 °C. Do not store the column below 0 °C

Chromatograms

Ordering information	
Metrosep C Supp 1 - 150/4.0	6.1052.420
Metrosep C Supp 1 Guard/4.0	6.1052.500
Metrosep C Supp 1 S-Guard/4.0	6.1052.510

Metrosep C Supp 1 - 250/4.0 (6.1052.430)

194 The Metrosep C Supp 1 - 250/4.0 separation column is used for difficult separations of standard cations, some transition cations and amines in the low concentration range. Conductivity detection after sequential suppression enables low detection limits thanks to low baseline noise.

Applications

- Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, NH₄⁺
- Samples with low concentrations
- Good Na⁺/NH₄⁺ separation
- Low limits of detection
- Matrix with high pH

Technical information

Substrate	Polyvinyl alcohol with carboxyl groups
Column dimensions	250 x 4.0 mm
Column body	PEEK
Standard flow	1.0 mL/min
Maximum flow	1.5 mL/min
Maximum pressure	15 MPa
Particle size	5 µm
Organic modifier	050% acetonitrile,
	030% acetone,
	no methanol
pH range	112
Temperature range	2040 °C
Capacity	30 µmol (K⁺)

Eluents

Nitric acid eluent Nitric ac (standard eluent) Rubidiur

Nitric acid (c = 1 mol/L) Rubidium (from rubidium nitrate)

Care

Note:

Ensure that the maximum pressure is never exceeded during regeneration. If the pressure becomes too high, reduce the flow rate.

Regeneration:

- Disconnect the column outlet from the downstream function units such as suppressor or detector and collect the flow of liquid in a beaker instead.
- 2. Rinse the column with ultrapure water before and after regeneration.

Depending on the type of contamination, proceed in accordance with one of the following instructions:

Organic contaminations:

Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min with the following solutions in succession:

 10 mL/2 L
 5.0 mmol/L

 172.5 μg/2 L (RbNO₃)
 50 μg/L Rb⁺

1. 1 h with ultrapure water

- 2. 1 h with acetonitrile-water mixture (30:70)
- 3. 1 h with ultrapure water

Inorganic contaminations:

- 1. Add 30% acetonitrile to the standard eluent.
- 2. Regenerate the column in the direction opposite to the flow at a flow rate of 1.0 mL/min for 1 h.

Storage

Store the column in ultrapure water at 4...8 °C. Do not store the column below 0 °C

Chromatograms µS/cm µS/cm 1.10 0.34 3 1.00 0.32 0.90 0.30 0.80 0.28 0.70 0.26 0.60 0.24 2 0.50 0.22 0.40 0.20 3 0.30 0.18 0.20 0.16 4.0 2.0 3.0 5.0 1.0 6.0 7.0 11.0 min 2.0 4.0 6.0 8.0 8.0 9.0 10.0 0.0 10.0 12.0 14.0 16.0 min Nitric acid eluent, geological leachate, 40 °C Conc. (mg/L) Nitric acid eluent, power plant sample, Conc. (µg/L) 1 Lithium 164.6 4 Magnesium 0.35 MiPCT-ME, 2000 µL, 40 °C 5 2 12.9 Sodium Calcium 1.02 1 Lithium Monoethanol- 4000 1.0 3 3 0.81 Potassium 2 Sodium 1.0 amine (MEA) 3.2 4.5 2.8 4.0 3.5 2.4 3.0 2.0 2.5 1.6 2.0 1.5 1.2 1.0 0.5 0.0 8.0 10.0 12.0 14.0 16.0 18.0 min 0.0 2.0 4.0 6.0

2

Nitric acid eluent, standard, 40 °C

1.00 | 4

5.00

5.00

5

6

Lithium

Sodium

Ammonium

1

2

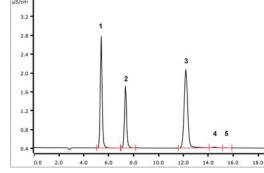
3

0.8	в -			1	1		11	4	5		
0.4	0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	min
Nitr	ic aci	d elue	ent, m	agnes	ium sp	ort di	ink, 4	0 °C	Co	nc. (n	ng/L)
1	Sc	dium		-	227	4	Z	linc			6.0
2	Pc	tassiu	um		202	5	C	alcium			0.6
3	Μ	agnes	sium		165						

Ordering information	
Metrosep C Supp 1 - 250/4.0	6.1052.430
Metrosep C Supp 1 Guard/4.0	6.1052.500
Metrosep C Supp 1 S-Guard/4.0	6.1052.510

Conc. (mg/L)

10.00


10.00

10.00

Potassium

Calcium

Magnesium

Separation columns

Separation column for the determination of organic substances

ProntoSil 120-5-C18 AQ - 150/4.0 (6.1008.100)

The ProntoSil 120-5-C18 AQ - 150/4.0 reversed phase column with medium capacity which can be used universally with aqueous eluents as well as with aqueous samples. This characteristic is especially important for applications in ion chromatography. The ProntoSil 120-5-C18 AQ - 150/4.0 can be used to solve application problems which lie in the boundary range between HPLC and ion chromatography.

Applications

- Determination of organic substances with low polarity and low charge
- Caffeine
- Determination of pharmaceutical products
- NTA, EDTA, DTPA
- (with UV/VIS detection)

Technical information

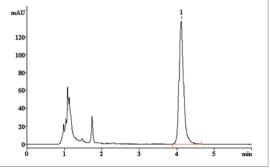
Substrate	Silica gel C ₁₈
Column dimensions	150 x 4.0 mm
Column body	Stainless steel
Standard flow	1.2 mL/min
Maximum flow	> 5.0 mL/min
Maximum pressure	120 MPa
Particle size	5 µm
Organic modifier	0100%
pH range	29

Eluents

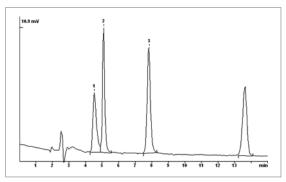
Lincinto			
Acetonitrile/water	Acetonitrile	300 mL/2 L	15%
(standard eluent)	Water	1700 mL/2 L	85%
Potassium dihydrogen	Potassium dihydrogen phosphate	6.8 g/2 L	25 mmol/L
phosphate/methanol	Methanol	600 mL/2 L	30%
(caffeine eluent)			
HNO ₃ /TBA-OH/TBA-HSO ₄ /	Nitric acid (c = 1 mol/L)	1.0 mL/2 L	0.5 mmol/L
MeOH (EDTA eluent)	Tetrabutylammonium hydroxide x 20 H ₂ O	4.0 g/2 L	2.5 mmol/L
	Tetrabutylammonium hydrogen sulfate	5.1 g/2 L	7.5 mmol/L
	Methanol	100 mL/2 L	5%
Nitrate/sulfuric acid/	Potassium nitrate	44.044 g/2 L	20 mmol/L
Methanol (phenol eluent)	Sulfuric acid (c = 1 mol/L)	1.0 mL/2 L	0.5 mmol/L
	Methanol	1000 mL/2 L	50%

Care

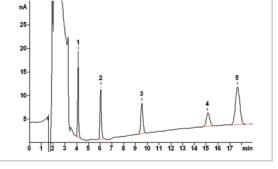
Regeneration


Rinse for 15 min at 1.0 mL/min with each of the following: 100% water, followed by acetonitrile, isopropanol, hexane, isopropanol, and back to acetonitrile.

Storage


For short periods (< 48 h): Rinse the column for 30 min at 0.5 mL/min with acetonitrile/water 50:50 (v:v). For prolonged periods (> 48 h):

Rinse the column with water for 30 min at 0.5 mL/min. Rinse the column with acetonitrile for 30 min at 0.5 mL/min.



Caffeine eluent, diet cola beverage, Conc. (mg/L) UV detection (λ = 254 nm) 1 Caffeine 159.9

EDTA eluent, standard, UV detection ($\lambda\,{=}\,260$ nm), 2 columns in series 1 NTA Conc. (mg/L) 0.98 DTPA NTA 0.48 3 EDTA 2 0.50 System peak

Phenol eluent, phenols in drinking water (spiked),

_

rometric detection			Conc. (ug/L)
Phenol	5.0	4	Trimethylphenol	5.0
Cresol	5.0	5	System peak	_
Dimethylphenol	5.0			
	Cresol	Phenol5.0Cresol5.0	Phenol 5.0 4 Cresol 5.0 5	Phenol 5.0 4 Trimethylphenol Cresol 5.0 5 System peak

Ordering information

ProntoSil 120-5-C18 AQ - 150/4.0 ProntoSil 120-5-C18 AQ - Guard/4.0 6.1008.100 6.1008.110

Guard columns

IC guard columns (precolumns)

Optimum protection for the separation columns, minimal dead volume, the same phase, and therefore nearly no influence on the chromatography are the characteristics of the Metrohm IC guard columns. They are extremely efficient, easy to handle and yet economical.

IC guard column cartridge for Hamilton PRP-X100 (6.1005.020)

202 For the preservation of PRP-X100 analytical separation columns. The cartridge effectively removes contaminations in the form of particles, as might arise, for example, from inadvertent bacteria and algae growth.

Applications

• Anions

Technical information

Column dimensions	20 x 4.0 mm
Column body	Stainless steel
Particle size	10 µm
Туре	Cartridge

Ordering information

Guard column cartridge for Hamilton PRP-X100 Guard cartridge holder, 20 mm

For use with Hamilton PRP-X100 - 100/4.0 Hamilton PRP-X100 - 250/4.0 6.1005.020 6.02821.000

> 6.1005.000 6.1005.010

Super-Sep Guard/4.6 (6.1009.010)

For the protection of the Super-Sep - 100/4.6 analytical separation column

Applications

• Anions

Technical information

Column dimensions	12 x 4.6 mm
Column body	Stainless steel
Particle size	12 µm
Туре	Column

Ordering information

Super-Sep Guard/4.6

For use with Super-Sep - 100/4.6 6.1009.010

6.1009.000

Metrosep Dual 4 Guard Column kit (6.1016.500)

Even if the Dual-4 columns based on monolithic silica gel are very durable, the use of the Dual 4 guard column is advised in order to increase the safety of the analytical separation column even more. The Dual 4 guard column is a PEEK cartridge which is also filled with monolithic silica gel. This cartridge is easy to replace and is screwed directly onto the analytical column in an aluminum holder. The proven «On Column Guard System» is simple to use and additionally offers the advantage of minimal dead volume.

Applications

Anions

Technical information	
Substrate	Monolithic silica gel
Column dimensions	5 x 4.6 mm
Column body	PEEK cartridge in an
	aluminum cartridge holder
	(replaceable)
Particle size	Monolith with 2 μ m
	Macropores and 13 nm
	Mesopores
Organic modifier	05% methanol or
	acetonitrile only
pH range	08
Туре	Cartridge

Ordering information	
Guard column kit for the Metrosep Dual 4, comprised of three guard column cartridges and	
one guard column cartridge holder	6.1016.500
Guard column cartridges for the Metrosep Dual 4 (3 pcs.)	6.1016.510
For use with	
Metrosep Dual 4 - 100/4.6	6.1016.030

Metrosep A Supp 1 Guard/4.6 (6.1005.340)

The Metrosep A Supp 1 Guard/4.6 protects the Metrosep A Supp 1 - 250/4.6 separation column against contamination from particles and bacteria.

Applications

• Anions

• Oxhalogenides

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	50 x 4.6 mm
Column body	PEEK
Particle size	7 µm
Organic modifier	0100%
pH range	013
Туре	Column

Ordering information Metrosep A Supp 1 Guard/4.6

For use with Metrosep A Supp 1 - 250/4.6 6.1005.340

6.1005.300

Metrosep A Supp 4/5 Guard/4.0 (6.1006.500) Metrosep A Supp 4/5 S-Guard/4.0 (6.1006.540)

206

The Metrosep A Supp 4/5 Guard/4.0 reliably protects the Metrosep A Supp 4, 5, and 7 IC anion columns against contamination from the sample or eluent. It contains the same separation material as the Metrosep A Supp 5, is also made of PEEK, and is screwed directly onto the separation column with nearly no dead volume («On Column Guard System»). The guard column prolongs the lifetime of the analytical column, with practically no influence on its chromatographic separation performance. The economical price and simple handling make using the Metrosep A Supp 4/5 Guard/4.0 highly recommended.

Applications

• Anions

Technical information

Substrate	Polyvinyl alcohol with
	quaternary
	ammonium groups
Column dimensions	5 x 4.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	0100% (particularly
	acetone, acetonitrile,
	methanol)
pH range	312
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 4/5 S-Guard/4.0 (6.1006.540) must be used instead of the Metrosep A Supp 4/5 Guard/4.0 (6.1006.500). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information	
Metrosep A Supp 4/5 Guard/4.0	6.1006.500
Metrosep A Supp 4/5 S-Guard/4.0	6.1006.540
For use with	
Metrosep A Supp 4 - 250/4.0	6.1006.430
Metrosep A Supp 5 - 50/4.0	6.1006.550
Metrosep A Supp 5 - 100/4.0	6.1006.510
Metrosep A Supp 5 - 150/4.0	6.1006.520
Metrosep A Supp 5 - 250/4.0	6.1006.530
Metrosep A Supp 7 - 150/4.0	6.1006.620
Metrosep A Supp 7 - 250/4.0	6.1006.630

Metrosep A Supp 5 Guard/2.0 (6.1006.600) Metrosep A Supp 5 S-Guard/2.0 (6.1006.610)

The Metrosep A Supp 5 Guard/2.0 reliably protects the Metrosep A Supp 5 and 7 microbore anion columns against contamination from the sample or eluent. It contains the same separation material as the Metrosep A Supp 5, is also made of PEEK, and is screwed directly onto the separation column with nearly no dead volume («On Column Guard System»). The guard column prolongs the lifetime of the analytical column, with practically no influence on its chromatographic separation performance. The economical price and simple handling make using the Metrosep A Supp 5 Guard/2.0 highly recommended.

Applications

• Anions

Technical information

Substrate		Polyvinyl alcohol with
		quaternary
		ammonium groups
Column dimens	ions	5 x 2.0 mm
Column body		PEEK
Particle size		5 µm
Organic modifie	er	0100% (particularly
		acetone, acetonitrile,
		methanol)
pH range		312
Туре		Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 5 S-Guard/2.0 (6.1006.610) must be used instead of the Metrosep A Supp 5 Guard/2.0 (6.1006.600). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information Metrosep A Supp 5 Guard/2.0	6,1006,600
Metrosep A Supp 5 S-Guard/2.0	6.1006.610
For use with	
Metrosep A Supp 5 - 150/2.0	6.1006.220
Metrosep A Supp 5 - 250/2.0	6.1006.230
Metrosep A Supp 7 - 150/2.0	6.1006.640
Metrosep A Supp 7 - 250/2.0	6.1006.650

Metrosep A Supp 10 Guard/4.0 (6.1020.500) Metrosep A Supp 10 S-Guard/4.0 (6.1020.510) Metrosep A Supp 10 Guard HC/4.0 (6.1020.520)

The Metrosep A Supp 10 Guard/4.0 reliably protects the A Supp 10 analytical separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily and directly onto the analytical column without tools.

Applications

Anions

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	6.1020.500: 5 x 4.0 mm
	6.1020.510: 5 x 4.0 mm
	6.1020.520: 12.5 x 4.0 mm
Column body	PEEK
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 10 S-Guard/4.0 (6.1020.510) must be used instead of the Metrosep A Supp 10 Guard/4.0 (6.1020.500). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

The Metrosep A Supp 10 Guard HC/4.0 is the highcapacity variant of the Metrosep A Supp 10 Guard/4.0.

The separation of cyclamate and phosphate is significantly improved when the Metrosep A Supp 5 - 100/4.0 (6.1006.510) is combined with the Metrosep A Supp 10 Guard HC/4.0.

Ordering information		
Metrosep A Supp 10 Guard/4.0		6.1020.500
Metrosep A Supp 10 S-Guard/4.0		6.1020.510
Metrosep A Supp 10 Guard HC/4.0		6.1020.520
For use with		
Metrosep A Supp 5 - 100/4.0 (with Metrosep A Supp 10	Guard HC/4.0; 6.1020.520)	6.1006.510
Metrosep A Supp 10 - 50/4.0		6.1020.050
Metrosep A Supp 10 - 75/4.0		6.1020.070
Metrosep A Supp 10 - 100/4.0		6.1020.010
Metrosep A Supp 10 - 250/4.0		6.1020.030

Metrosep A Supp 10 Guard/2.0 (6.1020.600) Metrosep A Supp 10 S-Guard/2.0 (6.1020.610)

The Metrosep A Supp 10 Guard/2.0 column reliably protects the Metrosep A Supp 10 microbore separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily and directly onto the analytical column without tools.

Applications

• Anions

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	5 x 2.0 mm
Column body	PEEK
Particle size	4.6 µm
Organic modifier	0100%
pH range	014
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 10 S-Guard/2.0 (6.1020.610) must be used instead of the Metrosep A Supp 10 Guard/2.0 (6.1020.600). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information	
Metrosep A Supp 10 Guard/2.0	6.1020.600
Metrosep A Supp 10 S-Guard/2.0	6.1020.610
For use with	
Metrosep A Supp 10 - 50/2.0	6.1020.250
Metrosep A Supp 10 - 75/2.0	6.1020.270
Metrosep A Supp 10 - 100/2.0	6.1020.210
Metrosep A Supp 10 - 150/2.0	6.1020.220
Metrosep A Supp 10 - 250/2.0	6.1020.230

Metrosep A Supp 15 Guard/4.0 (6.1030.500) Metrosep A Supp 15 S-Guard/4.0 (6.1030.510)

The Metrosep A Supp 15 Guard/4.0 reliably protects the A Supp 15 analytical separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column without tools.

Applications

Anions

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	5 x 4.0 mm
Column body	PEEK
Particle size	4.6 µm
Organic modifier	010%
pH range	014
Туре	Column

Ordening information

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 15 S-Guard/4.0 (6.1030.510) must be used instead of the Metrosep A Supp 15 Guard/4.0 (6.1030.500). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information	
Metrosep A Supp 15 Guard/4.0	6.1030.500
Metrosep A Supp 15 S-Guard/4.0	6.1030.510
For use with	
Metrosep A Supp 15 - 50/4.0	6.1030.450
Metrosep A Supp 15 - 100/4.0	6.1030.410
Metrosep A Supp 15 - 150/4.0	6.1030.420
Metrosep A Supp 15 - 250/4.0	6.1030.430

Metrosep A Supp 15 Guard/2.0 (6.1030.600) Metrosep A Supp 15 S-Guard/2.0 (6.1030.610)

The Metrosep A Supp 15 Guard/2.0 reliably protects the A Supp 15 - 250/2.0 analytical separation column against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column without tools.

Applications

Anions

Technical information

Substrate	Polystyrene/divinylbenzene	
	copolymer with quaternary	
	ammonium groups	
Column dimensions	5 x 2.0 mm	
Column body	PEEK	
Particle size	4.6 µm	
Organic modifier	010%	
pH range	014	
Туре	Column	

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 15 S-Guard/2.0 (6.1030.610) must be used instead of the Metrosep A Supp 15 Guard/2.0 (6.1030.600). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information

Metrosep A Supp 15 Guard/2.0 Metrosep A Supp 15 S-Guard/2.0

For use with Metrosep A Supp 15 - 250/2.0 6.1030.600 6.1030.610 211

6.1030.230

Metrosep A Supp 16 Guard/4.0 (6.1031.500) Metrosep A Supp 16 S-Guard/4.0 (6.1031.510)

The Metrosep A Supp 16 Guard/4.0 reliably protects the A Supp 16 analytical separation columns against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column without tools.

Applications

Anions

Technical information

Substrate	Polystyrene/divinylbenzene	
	copolymer with quaternary	
	ammonium groups	
Column dimensions	5 x 4.0 mm	
Column body	PEEK	
Particle size	4.6 µm	
Organic modifier	010%	
pH range	014	
Туре	Column	

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 16 S-Guard/4.0 (6.1031.510) must be used instead of the Metrosep A Supp 16 Guard/4.0 (6.1031.500). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information		
Metrosep A Supp 16 Guard/4.0	6.1031.500	
Metrosep A Supp 16 S-Guard/4.0	6.1031.510	
For use with		
Metrosep A Supp 16 - 100/4.0	6.1031.410	
Metrosep A Supp 16 - 150/4.0	6.1031.420	
Metrosep A Supp 16 - 250/4.0	6.1031.430	

Metrosep A Supp 16 Guard/2.0 (6.1031.600) Metrosep A Supp 16 S-Guard/2.0 (6.1031.610)

The Metrosep A Supp 16 Guard/2.0 reliably protects the A Supp 16 analytical separation columns with 2 mm inner diameter against contamination. Thanks to the «On Column Guard System», the guard column is very easy to handle. The guard column screws easily onto the analytical column without tools.

Applications

• For anions

Technical information

Substrate	Polystyrene/divinylbenzene	
	copolymer with quaternary	
	ammonium groups	
Column dimensions	5 x 2.0 mm	
Column body	PEEK	
Particle size	4.6 µm	
Organic modifier	010%	
pH range	014	
Туре	Column	

.

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep A Supp 16 S-Guard/2.0 (6.1031.610) must be used instead of the Metrosep A Supp 16 Guard/2.0 (6.1031.600). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information	
Metrosep A Supp 16 Guard/2.0	6.1031.600
Metrosep A Supp 16 S-Guard/2.0	6.1031.610
For use with	
Metrosep A Supp 16 - 100/2.0	6.1031.210
Metrosep A Supp 16 - 150/2.0	6.1031.220
Metrosep A Supp 16 - 250/2.0	6.1031.230
Metrosep A Supp 7 - 150/2.0	6.1006.640
Metrosep A Supp 7 - 250/2.0	6.1006.650

Metrosep Organic Acids Guard/4.6 (6.1005.250)

214 The Metrosep Organic Acids Guard/4.6 effectively removes contamination, thus protecting the analytical separation column.

Applications

• Organic acids

Technical information

Substrate	Polystyrene/divinylbenzene	
	copolymer with	
	sulfonic acid groups	
Column dimensions	50 x 4.6 mm	
Column body	Stainless steel	
Particle size	9 µm	
Organic modifier	020%	
pH range	113	
Туре	Column	

Ordering information	
Metrosep Organic Acids Guard/4.6	

For use with Metrosep Organic Acids - 100/7.8 Metrosep Organic Acids - 250/7.8 6.1005.250

6.1005.210 6.1005.200

Metrosep Carb 2 Guard/4.0 (6.1090.500) Metrosep Carb 2 S-Guard/4.0 (6.1090.510)

The Metrosep Carb 2 Guard/4.0 and the the Metrosep Carb 2 S-Guard/4.0 effectively removes contaminations, thus protecting the analytical separation column. The design of the guard column has been selected in such a way that its influence on chromatographic separation can be ignored.

Applications

• Carbohydrates

Technical information

Substrate	Polystyrene-divinylbenzene copolymer with quaternary
	ammonium groups
Column dimensions	5 x 4.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	050% acetonitrile or
	methanol (eluent)
	0100% acetone,
	acetonitrile or methanol
	(sample)
pH range	014
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep Carb 2 S-Guard/4.0 (6.1090.510) must be used instead of the Metrosep Carb 2 Guard/4.0 (6.1090.500). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information		
Metrosep Carb 2 Guard/4.0	6.1090.500	
Metrosep Carb 2 S-Guard/4.0	6.1090.510	
For use with		
Metrosep Carb 2 - 100/4.0	6.1090.410	
Metrosep Carb 2 - 150/4.0	6.1090.420	
Metrosep Carb 2 - 250/4.0	6.1090.430	
Metrosep Carb 2 - 150/4.0	6.1090.420	

Metrosep Carb 2 Guard/2.0 (6.01090.600) Metrosep Carb 2 S-Guard/2.0 (6.01090.610)

216

The microbore guard column, Metrosep Carb 2 Guard/2.0 effectively removes contamination, thus protecting the analytical separation column. The design of the guard column has been selected in such a way that its influence on the chromatographic separation can be ignored.

Applications

• Carbohydrates

Technical information

Substrate	Styrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	5 x 2.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	050% acetonitrile or
	methanol (eluent)
	0100% acetone,
	acetonitrile or methanol
	(sample)
pH range	014
Туре	Column

mportant note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep Carb 2 S-Guard/2.0 (6.01090.610) must be used instead of the Metrosep Carb 2 Guard/2.0 (6.01090.600). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information		
Metrosep Carb 2 Guard/2.0	6.01090.600	
Metrosep Carb 2 S-Guard/2.0	6.01090.610	
For use with		
Metrosep Carb 2 - 100/2.0	6.01090.210	
Metrosep Carb 2 - 150/2.0	6.01090.220	
Metrosep Carb 2 - 250/2.0	6.01090.230	

Nucleosil 5SA 2 Guard Cartridge/4.0 (6.1007.110)

For the protection of the Nucleosil 5SA - 125/4.0 analytical separation column.

Applications

• Cations

Technical information

Substrate	Spherical silica gel with
	sulfonic acid groups
Column dimensions	20 x 4.0 mm
Column body	Stainless steel
Particle size	5 µm
Туре	Cartridge

Ordering information

Nucleosil 5SA 2 Guard Cartridge/4.0 Holder to Nucleosil 5SA 2 Guard Cartridge/4.0

For use with IC Cation Column Nucleosil 5SA - 125/4.0 6.1007.110 6.2821.140 217

6.1007.000

Metrosep C 3 Guard/4.0 (6.1010.450) Metrosep C 3 S-Guard/4.0 (6.1010.460)

218

The Metrosep C 3 Guard/4.0 contains the C 3 column material and is used to protect Metrosep C 3 cation columns. Particles and contaminations are reliably retained, allowing the lifetime of the analytical separation column to be extended considerably. The Metrosep C 3 Guard/4.0 also functions according to the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.

Technical information

Substrate	Polyvinyl alcohol with
	carboxyl groups
Column dimensions	5 x 4.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	50% acetonitrile or 30%
	acetone (no methanol)
pH range	212
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep C 3 S-Guard/4.0 (6.1010.460) must be used instead of the Metrosep C 3 Guard/4.0 (6.1010.450). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information	
Metrosep C 3 Guard/4.0	6.1010.450
Metrosep C 3 S-Guard/4.0	6.1010.460
For use with	
Metrosep C 3 - 100/4.0	6.1010.410
Metrosep C 3 - 150/4.0	6.1010.420
Metrosep C 3 - 250/4.0	6.1010.430

Metrosep C 4 Guard/4.0 (6.1050.500) Metrosep C 4 S-Guard/4.0 (6.1050.510)

The Metrosep C 4 Guard/4.0 contains the C 4 column material and is used to protect all Metrosep cation columns that have a substrate based on silica gel. Particles and contaminations are reliably retained, allowing the lifetime of the analytical separation column to be extended considerably. The economical price is an additional plus. The Metrosep C 4 Guard/4.0 also functions according to the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.

Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	5 x 4.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep C 4 S-Guard/4.0 (6.1050.510) must be used instead of the Metrosep C 4 Guard/4.0 (6.1050.500). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

6.1050.500
6.1050.510
6.1050.450
6.1050.410
6.1050.420
6.1050.430
6.1051.410
6.1051.420
6.1051.430

Metrosep C 4 Guard/2.0 (6.1050.600) Metrosep C 4 S-Guard/2.0 (6.1050.610)

220

The Metrosep C 4 Guard/2.0 contains the C 4 column material and is used to protect all Metrosep cation columns with 2 mm inner diameter which have a substrate based on silica gel. Particles and contaminations are reliably retained, allowing the lifetime of the analytical separation column to be extended considerably. The economical price is an additional plus. The Metrosep C 4 Guard/2.0 also functions according to the «On Column Guard System» and is screwed directly onto the separation column with nearly no dead volume.

Applications

• Cations

Technical information

Substrate	Silica gel with
	carboxyl groups
Column dimensions	5 x 2.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	0100% (no methanol)
pH range	27
Туре	Column

Important note

If separation columns with a length of 250 mm are used in a column oven of the «Advanced» instrument generation, then the Metrosep C 4 S-Guard/2.0 (6.1050.610) must be used instead of the Metrosep C 4 Guard/2.0 (6.1050.600). It is connected to the 250 mm column by means of capillary connection and can thus also be placed in the column oven.

Ordering information	
Metrosep C 4 Guard/2.0	6.1050.600
Metrosep C 4 S-Guard/2.0	6.1050.610
For use with	
Metrosep C 4 - 100/2.0	6.1050.210
Metrosep C 4 - 150/2.0	6.1050.220
Metrosep C 4 - 250/2.0	6.1050.230

Metrosep C Supp 1 Guard/4.0 (6.1052.500) Metrosep C Supp 1 S-Guard/4.0 (6.1052.510)

The Metrosep C Supp 1 Guard/4.0 contains the C Supp 1 column material and is used to protect Metrosep C Supp 1 cation columns. Particles and contaminations are reliably retained, allowing the service life of the analytical separation column to be prolonged considerably. The Metrosep C Supp 1 Guard/4.0 also functions according to the "On Column Guard System" and is screwed directly onto the separation column with nearly no dead volume.

Applications

• Cations

Technical information

Substrate	Polyvinyl alcohol with
	carboxyl groups
Column dimensions	5 x 4.0 mm
Column body	PEEK
Particle size	5 µm
Organic modifier	50 % Acetonitril or
	30 % Aceton
pH range	112
Туре	Column

6.1052.500
0.1052.500
6.1052.510
6.1052.410
6.1052.420
6.1052.430

Metrosep RP 2 Guard/3.5 (6.1011.030)

222 The Metrosep RP 2 Guard/3.5 is a guard column for universal use. It reliably protects the analytical separation column against contamination, removing the smallest particles, traces of iron oxide, and bacteria. The Metrosep RP 2 Guard/3.5 helps to reduce costs; its filter disk can be replaced very easily.

Applications

• Universal guard column

Technical information

Substrate	Polymer
Column dimensions	1.0 x 3.5 mm
Column body	PEEK
Pore size	0.2 µm
Organic modifier	0100%
pH range	113
Туре	Column

Ordering information	
Metrosep RP 2 Guard/3.5	6.1011.030
Replacement filters for RP 2 Guard/3.5 (10 pcs.)	6.1011.130
For use with	
Phenomenex Star Ion A300 [™] - 100/4.6	6.1005.100
Phenomenex Star Ion A300 [™] HC - 100/10.0	6.1005.110
Metrosep Anion Dual 2 - 75/4.6	6.1006.100
Metrosep Anion Dual 3 - 100/4.0	6.1006.120
Metrosep A Supp 1 HS - 50/4.6	6.1005.350
Metrosep A Supp 3 - 250/4.6	6.1005.320
Hamilton PRP-X300 - 250/4.6	6.1005.030
Hamilton RCX-30 - 150/4.6	6.1018.010
Hamilton RCX-30 - 250/4.6	6.1018.000
Metrosep Amino Acids 1 - 100/4.0	6.4001.410
Metrosep C 5 - 150/4.6	6.4000.320

ProntoSil 120-5-C18 AQ Guard/4.0 (6.1008.110)

The ProntoSil 120-5-C18 AQ Guard/4.0 is used to protect the ProntoSil 120-5-C18 AQ - 150/4.0 against contamination from particles and bacteria.

Applications

• Organic substances

Technical information

Substrate	Silica gel C ₁₈
Column dimensions	14 x 4.0 mm
Column body	Stainless steel
Particle size	5 µm
Organic modifier	0100%
pH range	29
Туре	Column

Ordering information ProntoSil 120-5-C18 AQ Guard/4.0

For use with ProntoSil 120-5-C18 AQ - 150/4.0 6.1008.110

6.1008.100

Metrosep BP 1 Guard/2.0 (6.1015.100)

224 The Metrosep BP 1 Guard/2.0 is used to generate a sufficiently high working pressure in the flow path of postcolumn reagents. They are used in combination with a high-pressure pump for conveying the post-column reagent in the Professional Reactor.

Applications

• Backpressure column

Technical information

SubstrateDiamondColumn dimensions50 x 2.0 mmColumn bodyPEEKParticle size6...10 µmOrganic modifier0...100%TypeColumn

Preconcentration columns

Metrosep A PCC 2/4.0 (6.1006.330), Metrosep A PCC 2 HC/4.0 (6.1006.340), and Metrosep A PCC 2 VHC/4.0 (6.1006.350)

The Metrosep A PCC 2/4.0 is used for the preconcentration of anions from small sample volumes. The small dead volume of the column guarantees an excellent peak shape.

> The Metrosep A PCC 2 HC/4.0 and the Metrosep A PCC 2 VHC/4.0, on the other hand, are high-capacity preconcentration columns for anions. They are used primarily where large sample volumes with very low anion concentrations must be preconcentrated. The high capacity prevents premature elution of the anions by the matrix itself (in most cases water). Reliable determinations can now be made using these high-capacity columns. All preconcentration columns are made of PEEK.

Applications

Substrato

• Preconcentration of anions

Technical information

Substrate
Column dimensions
Column body Maximum flow Maximum pressure Particle size Organic modifier

pH range Type Capacity

Polymethacrylate with quaternary ammonium groups 6.1006.330: 1.0 x 4.0 mm 6.1006.340: 13.0 x 4.0 mm 6.1006.350: 30.0 x 4.0 mm PEEK 5.0 mL/min 20 MPa 65 µm Eluent: 0...10% (acetone, acetonitrile, methanol, isopropanol) Sample: 0...100% (acetone, acetonitrile, methanol, isopropanol) 2...12 Column 6.1006.330: 0.5 µmol (Cl⁻) 6.1006.340: 5 µmol (Cl⁻) 6.1006.350: 10 µmol (Cl⁻)

Capacit

Care Storage In the eluent

Ordering information

Metrosep A PCC 2/4.0 Metrosep A PCC 2 HC/4.0 Metrosep A PCC 2 VHC/4.0 6.1006.330 6.1006.340 6.1006.350

Metrosep C PCC 1/4.0 (6.1010.300), Metrosep C PCC 1 HC/4.0 (6.1010.310), and Metrosep C PCC 1 VHC/4.0 (6.1010.320)

The Metrosep C PCC 1/4.0 in the various versions are suitable for the preconcentration of monovalent and divalent cations. They are used primarily where large sample volumes with very low cation concentrations must be preconcentrated. In addition, they fulfill the function of a trap column when working with matrix elimination, i.e. the cations to be determined are held back and allow the removal of the disruptive matrix before the sample is fed to the IC system.

The greater the capacity of the column (in the first approximation, this is proportional to the length of the packing bed) the larger the sample volume which can be preconcentrated. This allows detection limits into the lower ppt range. On the other hand, the packing bed increases the dead volume of the preconcentration column; with increasing size the injection peak in the chromatogram increases in peak area. Three different capacities provide the needed flexibility for all preconcentration tasks.

The preconcentration columns are distinguished by very low noise and very low backpressure. They are suitable for preconcentration using a peristaltic pump or Metrohm Dosino technology.

Applications

• Preconcentration of cations

Technical information

Substrate	Spherical polymethacrylate
	with carboxyl groups
Column dimensions	6.1010.300: 8.5 x 4.0 mm
	6.1010.310: 16.5 x 4.0 mm
	6.1010.320: 30.0 x 4.0 mm
Column body	PEEK
Maximum pressure	15 MPa
Particle size	35 µm
Organic modifier	010%
pH range	114
Туре	Column
Preconcentration volume*	6.1010.300: 20 mL
	6.1010.310: 60 mL
	6.1010.320: 90 mL

* A solution was preconcentrated with $Li^* = 2 \mu g/L$, Na^* , $NH_4^* = 10 \mu g/L$ and $K^* = 20 \mu g/L$. The maximum preconcentration volume is determined by the fact that the peak area of the lithium does not continue to increase. This means that at greater volumes the lithium is already eluting again from the column.

Care Storage In the eluent

Ordering information

Metrosep C PCC 1/4.0 Metrosep C PCC 1 HC/4.0 Metrosep C PCC 1 VHC/4.0 6.1010.300 6.1010.310 6.1010.320

IC trap columns

Metrosep A Trap 1 - 100/4.0 (6.1014.000)

232 The Metrosep A Trap 1 - 100/4.0 is a high capacity anion column, which is used to purify the eluent flow. Even reagents of the highest quality, e.g. «ultrapure» or «puriss.» can still contain minimal anionic contaminants. These are reliably held back by the Metrosep A Trap 1 - 100/4.0. This column is primarily used with gradient applications.

Station of the second

Applications

• Purification of the anion eluent flow

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with quaternary
	ammonium groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Maximum pressure	25 MPa
Particle size	570 µm
Organic modifier	020%
pH range	114
Type	Column

Care

Regeneration

a) First rinse with 30 mL 0.5 mol/L Na_2CO_3 at a flow rate of 1.0 mL/min.

b) Then rinse with 30 mL ultrapure water at a flow of 1.0 mL/min.

Storage In the eluent

Ordering information

Metrosep A Trap 1 - 100/4.0

6.1014.000

Metrosep C Trap 1 - 100/4.0 (6.1015.000)

This is a high capacity cation column, which is used to purify the eluent flow. Even reagents of the highest quality, e.g. «ultrapure» or «puriss.» can still contain minimal cationic contaminants. These are reliably held back by the Metrosep C Trap 1 - 100/4.0.

State State of State

Applications

• Purification of the cation eluent flow

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer with
	sulfonic acid groups
Column dimensions	100 x 4.0 mm
Column body	PEEK
Maximum pressure	25 MPa
Particle size	3774 µm
Organic modifier	020%
pH range	114
Туре	Column

Care

Regeneration

a) First rinse with 20 mL of 5% $\rm H_2SO_4$ at a flow of 1.0 mL/min.

b) Then rinse with 15 mL ultrapure water at a flow of 1.0 mL/min.

Storage In the eluent

Ordering information Metrosep C Trap 1 - 100/4.0

6.1015.000

Metrosep RP Trap 1 - 50/4.0 (6.1014.100)

The Metrosep RP Trap 1 - 50/4.0 column is used to eliminate organic contaminants from the eluent. The Metrosep RP Trap 1 - 50/4.0 column helps avoid eluentrelated interference at the baseline, especially with gradient systems. Its use is also recommended for the purification of the p-cyanophenol eluent of the Metrosep Dual 4 separation columns.

Applications

• Purification of the eluent flow

Technical information

Substrate	Silica gel
Column dimensions	50 x 4.0 mm
Column body	PEEK
Maximum pressure	25 MPa
Particle size	10 µm
pH range	19
Туре	Column

Care

Regeneration

- a) Rinse with 10 mL 80% acetonitrile/water at a flow rate of 2.0 mL/min.
- b) Rinse with 20 mL 100% acetonitrile at a flow rate of 2.0 mL/min.
- c) Rinse with 10 mL 80% acetonitrile/water at a flow rate of 2.0 mL/min.

Note

If the Metrosep RP Trap 1 - 50/4.0 is used with the Metrosep Dual 4 (6.1016.0X0), then it must be rinsed with 40 mL water at a flow rate of 2.0 mL/min after the regeneration.

Storage In the eluent

Ordering information

Metrosep RP Trap 1 - 50/4.0

6.1014.100

For use with Metrosep Dual 4 - 100/4.6

6.1016.030

Metrosep RP Trap 2 - 100/4.0 (6.1014.150)

The Metrosep RP Trap 2 - 100/4.0 column is used to eliminate organic contaminants from the eluent. The Metrosep RP Trap 2 - 100/4.0 column helps avoid eluent-related interference at the baseline, especially with gradient systems. It is based on a polymer material. Its presence enables the use of the Metrosep RP Trap 2 - 100/4.0 in the acidic as well as in the alkaline pH range.

Applications

• Elimination of organic contamination from the eluent.

Technical information

ubstrate	Polystyrene/divinylbenzene
	copolymer
olumn dimensions	100 x 4.0 mm
olumn body	PEEK
1aximum pressure	25 MPa
H range	114
/pe	Column
	olumn dimensions olumn body 1aximum pressure H range

Turn Real Provide Andread Andr

Metrosep I Trap 1 - 100/4.0 (6.1014.200)

236

The Metrosep I Trap 1 - 100/4.0 column is used to eliminate ionic, i.e. cationic and anionic, contaminants from aqueous solutions. Its use is especially recommended for the purification of the transfer water in combination with «MISP» (Metrohm Inline Sample Preparation). Using the Metrosep I Trap 1 - 100/4.0 column can significantly reduce the influence of the transfer water on the system blank.

Applications

• For the elimination of traces of anionic and cationic contaminants from ultrapure water

Technical information

Substrate	Polystyrene/divinylbenzene copolymer with anionic and cationic ion exchangers
Column dimensions	100 x 4.0 mm
Column body	PEEK
Maximum pressure	25 MPa
Particle size	300840 µm
Organic modifier	0100%
pH range	014
Туре	Column

not possible

Storage in ultrapure water

Ordering information Metrosep I Trap 1 - 100/4.0

Metrosep BO₃³⁻ Trap 1 - 100/4.0 (6.1015.200)

Trap column for the removal of borate contaminants from the eluent. The Metrosep BO_3^{3} Trap 1 - 100/4.0 is mainly used in carbohydrate analysis with hydroxide eluents. The removal of borate from the eluent improves the peak shape of sorbitol.

Applications

• Elimination of borate traces from hydroxide eluents.

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer
Column dimensions	100 x 4.0 mm
Column body	PEEK
Maximum pressure	25 MPa
pH range	014
Туре	Column

Care

Conditioning

Marine Rolling Column Rinse the column with hydroxide eluent for 90 min at a maximum flow of 0.5 mL/min.

Regeneration

Rinse the column with the following solutions in succession in the direction against the flow:

- during 30 min with 0.1 mol/L hydrochloric acid at a flow rate of 0.3 mL/min
- during 30 min with 1 mol/L sodium chloride solution at a flow rate of 0.3 mL/min
- during 30 min with ultrapure water at a flow rate of 0.5 mL/min
- during 90 min with hydroxide eluent at a flow rate of maximum 0.5 mL/min

Storage

in ultrapure water

Ordering information

Metrosep BO₃³⁻Trap 1 - 100/4.0

Metrosep CO₃²⁻ Trap 1 - 100/4.0 (6.1015.300)

238

Trap column for the removal of carbonate traces in hydroxide eluents. The Metrosep CO_3^{2-} Trap 1 - 100/4.0 is used in carbohydrate analysis with hydroxide eluents.

Applications

• Elimination of carbonate contamination from hydroxide eluents

Technical information

Substrate	Polystyrene/divinylbenzene
	copolymer
Column dimensions	100 x 4.0 mm
Column body	PEEK
Maximum pressure	25 MPa
pH range	014
Туре	Column

TO NOT THE REPORT OF THE REPOR Recommended eluent concentration 5 - 40 mmol/L hydroxide eluent

Regeneration

Rinse the column during 840 min with 0.3 mol/L sodium hydroxide at a flow rate of 1 mL/min.

Storage Store the column in 0.3 mol/L sodium hydroxide.

Ordering information

Metrosep CO₃²⁻ Trap 1 - 100/4.0

IC sample-preparation cartridges

242 IC-RP sample-preparation cartridge (6.1012.X00) Material RP For the non-polar solid-phase extraction. The cartridge removes organic substances. Application 50 Quantity 10 0.5 mL Bed volume 0.5 mL Connection Luer Luer Order number 6.1012.000 6.1012.100

IC-H sample-preparation cartridge (6.1012.X10)			
Material	Cation exchanger in acid form		
Application	For the elimination of interfering cations. The cartridge can also be used for the neutralization of alkaline samples.		
Quantity	50	10	25
Bed volume	0.5 mL	0.5 mL	1.5 mL
Capacity	0.8 mmol	0.8 mmol	2.0 mmol
Connection	Luer	Luer	Luer
Order number	6.1012.010	6.1012.110	6.1012.210

IC-Ag sample-preparation cartridge (6.1012.X20)			
Material	Cation exchanger in s	ilver form	
Application	For the removal of ha	lides.	
Quantity	50	10	25
Bed volume	0.5 mL	0.5 mL	1.5 mL
Capacity	0.8 mmol	0.8 mmol	2.0 mmol
Connection	Luer	Luer	Luer
Order number	6.1012.020	6.1012.120	6.1012.220

IC-OH sample-preparation cartridge (6.1012.X30)			
Material	Anion exchanger in hydroxide form		
Application	For the neutralization of extr	remely acidic samples.	
Quantity	50	10	
Bed volume	0.5 mL	0.5 mL	
Capacity	0.6 mmol	0.6 mmol	
Connection	Luer	Luer	
Order number	6.1012.030	6.1012.130	

IC-Na sample-preparation cartridge (6.1012.X40)	
Material	Cation exchanger in sodium form
Application	For the elimination of cations.
Quantity	50
Bed volume	0.5 mL
Capacity	0.8 mmol
Connection	Luer
Order number	6.1012.040

IC-C18 sample-preparation cartridge (6.1012.X50)		
Material	C18	
Application	For the removal of polar substances; not suitable for F^- determination.	
Quantity	50	
Bed volume	0.5 mL	
Connection	Luer	
Order number	6.1012.050	

IC accessory parts

PEEK inline filter (6.2821.120)

The inline filter in the PEEK housing not only removes all particles of mineral origin, but also algae and bacteria. The exclusion diameter of 2 μ m ensures that no contamination can damage the column or the suppressor.

Ordering information PEEK inline filter Replacement filters (10 pcs.)

6.2821.1206.2821.130

Coupling safety olive with PEEK inline filter (6.2744.180)

The coupling safety olive with PEEK inline filter connects the tube of the peristaltic pump with the following system, e.g. with the suppressor or with the post-column reactor (PCR). On the one hand, this prevents the tube of the peristaltic pump from detaching unintentionally, while on the other hand all particles with a diameter of greater than 2 μ m are effectively removed from the flow of liquid.

Ordering information

Coupling safety olive with PEEK inline filter Replacement filters (10 pcs.) 6.2744.180 6.2821.130 Subject to change without notice. Design Ecknauer-Schoch ASW, Printing Metrohm AG, CH-9100 Herisau, Switzerland 8.000.5194EN – 2016-09 www.metrohm.com

